Remove ads
Mathematical measure of a permutation, in combinatorics From Wikipedia, the free encyclopedia
In mathematics (and particularly in combinatorics), the major index of a permutation is the sum of the positions of the descents of the permutation. In symbols, the major index of the permutation w is
For example, if w is given in one-line notation by w = 351624 (that is, w is the permutation of {1, 2, 3, 4, 5, 6} such that w(1) = 3, w(2) = 5, etc.) then w has descents at positions 2 (from 5 to 1) and 4 (from 6 to 2) and so maj(w) = 2 + 4 = 6.
This statistic is named after Major Percy Alexander MacMahon who showed in 1913 that the distribution of the major index on all permutations of a fixed length is the same as the distribution of inversions. That is, the number of permutations of length n with k inversions is the same as the number of permutations of length n with major index equal to k. (These numbers are known as Mahonian numbers, also in honor of MacMahon.[1]) In fact, a stronger result is true: the number of permutations of length n with major index k and i inversions is the same as the number of permutations of length n with major index i and k inversions, that is, the two statistics are equidistributed. For example, the number of permutations of length 4 with given major index and number of inversions is given in the table below.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.