Loading AI tools
Spanish computational chemist From Wikipedia, the free encyclopedia
Maia Garcia Vergniory is a Spanish computational physicist who is a group leader at the Max Planck Institute for Chemical Physics of Solids.[1] Her work in topological quantum chemistry investigates the phases of topological materials.[2] She was elected Fellow of the American Physical Society in 2022.[3]
Maia Vergniory | |
---|---|
Born | Maia Garcia Vergniory |
Alma mater | University of the Basque Country Joseph Fourier University |
Scientific career | |
Fields | Electronic structure Magnetism Spin Metals Topological insulators[1] |
Institutions | Donostia International Physics Center Ikerbasque Max Planck Institute for Chemical Physics of Solids |
Thesis | Gorputz anitzen eta banda-egituraren efektuak egoera elektroniko kitzikatuen zein oio higikorren eta gainazal solidoen arteko elkerrekintzaren gainean (2008) |
Doctoral advisor | Jose Maria Pitarke de la Torre and Pedro Miguel Echenique |
Website | maiagv-dipc |
Vergniory was born in Getxo.[4] She was a doctoral researcher at the University of the Basque Country. Her research considered many-body effects on the interactions between excited electronic states and the mobile ions on surfaces.[5] She started working on topological materials in 2012.[6]
Vergniory worked as a research fellow at the Ikerbasque and the Donostia International Physics Center.[7] She studied novel materials and computational strategies to realise new condensed matter systems.[8]
Verginory became interested in the design of new topological materials with optimised functional properties.[9][10] Topological materials are insulators in the bulk but conductive on their surfaces.[11] The conducting channels that facilitate current flow are robust and independent of size.
Vergniory studied the Inorganic Crystal Structure Database to identify topologically nontrivial materials.[12] She designed a computational effort to simulate real materials and determine whether or not they showed topological properties.[13] This included complex theoretical analysis that could classify topological phases, and information from materials scientists on whether materials were suitable or not.[14] Vergniory uses her supercomputers to perform her calculations ab initio.[6] In an interview with Physics World, Verginory said that she had been surprised by how many materials she identified with topological properties.[14] As an output of this work, the high-order topological insulator Bi4Br4 was synthesised and studied experimentally. She showed that if it was possible to identify the symmetry of the crystalline symmetry of a material, she could easily anticipate the behaviour of the charge.[14] She has since started investigating organic materials.[14] She believes that topological crystals with a chiral structure will display several exotic physical phenomena.[15]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.