Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n−6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5]

Quick Facts Names, Identifiers ...
Linoleic acid
Thumb
Thumb
Thumb
Names
Preferred IUPAC name
(9Z,12Z)-Octadeca-9,12-dienoic acid
Other names
cis,cis-9,12-Octadecadienoic acid
C18:2 (Lipid numbers)
Identifiers
3D model (JSmol)
1727101
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.428
EC Number
  • 200-470-9
57557
KEGG
UNII
  • InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6-,10-9- Y
    Key: OYHQOLUKZRVURQ-HZJYTTRNSA-N Y
  • InChI=1/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6-,10-9-
    Key: OYHQOLUKZRVURQ-HZJYTTRNBX
  • CCCCC/C=C\C/C=C\CCCCCCCC(=O)O
Properties
C18H32O2
Molar mass 280.452 g·mol−1
Appearance Colorless oil
Density 0.9 g/cm3[1]
Melting point −12 °C (10 °F)[1]
−6.9 °C (19.6 °F)[2]
−5 °C (23 °F)[3]
Boiling point 229 °C (444 °F) at 16 mmHg[2]
230 °C (446 °F) at 21 mbar[3]
230 °C (446 °F) at 16 mmHg[1]
0.139 mg/L[3]
Vapor pressure 16 Torr at 229 °C[citation needed]
Acidity (pKa) 4.77 at 25°C[4]
Hazards
NFPA 704 (fire diamond)
ThumbHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 112 °C (234 °F)[3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Close

Linoleic acid is a polyunsaturated, omega−6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others.

The word "linoleic" derives from Latin linum 'flax' and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

History

In 1844, F. Sacc, working at the laboratory of Justus von Liebig, isolated linoleic acid from linseed oil.[8][9] In 1886, K. Peters determined the existence of two double bonds.[10] Its essential role in human diet was discovered by G. O. Burr and others in 1930.[11] Its chemical structure was determined by T. P. Hilditch and others in 1939, and it was synthesized by R. A. Raphael and F. Sondheimer in 1950.[12]

In physiology

Summarize
Perspective

The consumption of linoleic acid is vital to proper health, as it is an essential fatty acid.[13]

Metabolism and eicosanoids

Thumb

Linoleic acid (LA: C
18
H
32
O
2
; 18:2,n−6) is a precursor to arachidonic acid (AA: C
20
H
32
O
2
; 20:4,n−6) with elongation and unsaturation.[13] AA is the precursor to some prostaglandins,[14] leukotrienes (LTA, LTB, LTC), thromboxane (TXA)[15] and the N-acylethanolamine (NAE) arachidonoylethanolamine (AEA: C
22
H
37
NO
2
; 20:4,n−6),[16] and other endocannabinoids and eicosanoids.[17]

The metabolism of LA to AA begins with the conversion of LA into gamma-linolenic acid (GLA), effected by Δ6 desaturase.[18] GLA is converted to dihomo-γ-linolenic acid (DGLA), the immediate precursor to AA.

LA is also converted by various lipoxygenases, cyclooxygenases, cytochrome P450 enzymes (the CYP monooxygenases), and non-enzymatic autoxidation mechanisms to mono-hydroxyl products viz., 13-Hydroxyoctadecadienoic acid, and 9-Hydroxyoctadecadienoic acid; these two hydroxy metabolites are enzymatically oxidized to their keto metabolites, 13-oxo-octadecadienoic acid and 9-oxo-octadecdienoic acid. Certain cytochrome P450 enzymes, the CYP epoxygenases, catalyze oxidation of LA to epoxide products viz., its 12,13-epoxide, vernolic acid, and its 9,10-epoxide, coronaric acid. These linoleic acid products are implicated in human physiology and pathology.[19]

Hydroperoxides derived from the metabolism of anandamide (AEA: C
22
H
37
NO
2
; 20:4,n−6), or its linoleoyl analogues, are by a lipoxygenase action found to be competitive inhibitors of brain and immune cell FAAH, the enzyme that breaks down AEA and other endocannabinoids, and the compound linoleoyl-ethanol-amide (C
20
H
37
NO
2
; 18:2,n−6), an N-acylethanolamine,[clarification needed] - the ethanolamide of linoleic acid (LA: C
18
H
32
O
2
; 18:2,n−6) and its metabolized incorporated ethanolamine (MEA: C
2
H
7
NO
),[20] is the first natural inhibitor of FAAH, discovered.[21][22]

Uses and reactions

Linoleic acid is a component of quick-drying oils, which are useful in oil paints and varnishes. These applications exploit the lability of the doubly allylic C−H groups (−CH=CH−CH2−CH=CH−) toward oxygen in air (autoxidation). Addition of oxygen leads to crosslinking and formation of a stable film.[23]

Reduction of the carboxylic acid group of linoleic acid yields linoleyl alcohol.[24]

Linoleic acid is a surfactant with a critical micelle concentration of 1.5 x 10−4 M @ pH 7.5.[citation needed]

Linoleic acid has become increasingly popular in the beauty products industry because of its beneficial properties on the skin. Research points to linoleic acid's anti-inflammatory, acne reductive, skin-lightening and moisture retentive properties when applied topically on the skin.[25][26][27][28]

Linoleic acid is also used in some bar of soap products.

Dietary sources

Summarize
Perspective

It is abundant in safflower, and corn oil, and comprises over half their composition by weight. It is present in medium quantities in soybean oils, sesame, and almonds.[29][30]

More information Name, % LA† ...
Name% LAref.
Salicornia oil75%[31]
Safflower oil72–78%[32]
Evening Primrose oil65–80%[33]
Melon seed oil50–70%[34]
Poppyseed oil74%[35]
Grape seed oil70%[36]
Prickly Pear seed oil50–78%[37]
Cardoon oil60%[38][39]
Hemp oil54.3%[40]
Wheat germ oil56%[41][42]
Cottonseed oil54%[43][44]
Corn oil51.9%[45]
Walnut oil50–72%[46][47]
Soybean oil50.9%[48]
Sesame oil45%[49][50]
Pumpkin seed oil42–59%[51]
Rice bran oil39%
Argan oil37%
Pistachio oil32.7%
Peach oil29%[52]
Almonds24%
Canola oil17.8%[53]
Sunflower oil20.5%[54]
Chicken fat18–23%[55]
Peanut oil19.6%[56]
Egg yolk16%
Linseed oil (flax), cold pressed14.2%[57]
Lard10%
Palm oil10%
Olive oil8.4%[58]
Tallow 3%
Cocoa butter3%
Macadamia oil2%
Butter2%
Coconut oil2%
  average val, except the items where a range is given
Close

Other occurrences

Cockroaches release oleic and linoleic acid upon death, which discourages other roaches from entering the area. This is similar to the mechanism found in ants and bees, which release oleic acid upon death.[59]

Health effects

Consumption of linoleic acid has been associated with lowering the risk of cardiovascular disease, diabetes and premature death.[60][61][62] There is high-quality evidence that increased intake of linoleic acid decreases total blood cholesterol and low-density lipoprotein.[63] Higher in vivo circulating and tissue levels of linoleic acid are associated with a lower risk of major cardiovascular events.[64] Clinical trials have shown that increased linoleic acid intake does not increase markers of inflammation or oxidative stress.[65][66]

The American Heart Association advises people to replace saturated fat with linoleic acid to reduce CVD risk.[67]

See also

References

Further reading

Wikiwand - on

Seamless Wikipedia browsing. On steroids.