Conjugated linoleic acid

Group of compounds found in meat and dairy from ruminants From Wikipedia, the free encyclopedia

Conjugated linoleic acid

Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. In principle, 28 isomers are possible. CLA is found mostly in the meat and dairy products derived from ruminants. The two C=C double bonds are conjugated (i.e., separated by a single bond) as opposed by "typical" polyunsaturated fatty acids where double bonds are separated by two single bonds. CLAs are simultaneously both cis-fats and trans-fats, as one of the two C=C bonds is cis and the other trans.

Thumb
Rumenic acid, an example of conjugated linoleic acid

CLA is marketed as a dietary supplement on the basis of its claimed health benefits.[1]

Biochemistry

Summarize
Perspective

CLA describes a variety of isomers of octadecadienoic fatty acids.[2]

Commonly, CLAs are studied as some mixture of isomers wherein the isomers c9,t11-CLA (rumenic acid) and t10,c12-CLA were the most abundant.[3] Studies show however that individual isomers have distinct health effects.[4][5]

Conjugated linoleic acid is both a trans fatty acid and a cis fatty acid. The cis bond causes a lower melting point and, ostensibly, also the observed beneficial health effects. Unlike other trans fatty acids, it may have beneficial effects on human health.[6] CLA is conjugated, and in the United States, trans linkages in a conjugated system are not counted as trans fats for the purposes of nutritional regulations and labeling.[citation needed] CLA and some trans isomers of oleic acid are produced by microorganisms in the rumens of ruminants. Non-ruminants, including humans, produce certain isomers of CLA from trans isomers of oleic acid, such as vaccenic acid, which is converted to CLA by delta-9-desaturase.[7][8]

In healthy humans, CLA and the related conjugated linolenic acid (CLNA) isomers are bioconverted from linoleic acid and alpha-linolenic acid, respectively, mainly by Bifidobacterium bacteria strains inhabiting the gastrointestinal tract.[citation needed] However, this bioconversion may not occur at any significant level in those with a digestive disease, gluten sensitivity, or dysbiosis.[9][10][11][12]

Health effects

CLA is marketed in dietary supplement form for its supposed anti-cancer benefit (for which there is no strong evidence or known mechanism, and very few studies conducted so far)[13] and as a bodybuilding aid.[1] A 2004 review of the evidence said that while CLA seemed to benefit animals, there was a lack of good evidence of human health benefits despite the many claims made for it.[14]

Likewise, there is insufficient evidence that CLA has a useful benefit for overweight or obese people as it has no long-term effect on body composition.[15] Although CLA has shown an effect on insulin response in diabetic rats, there is no evidence of this effect in humans.[16]

Dietary sources

Food products from grass-fed ruminants (e.g. mutton and beef) are good sources of CLA and contain much more of it than those from grain-fed animals.[17] Eggs from chickens that have been fed CLA are also rich in CLA, and CLA in egg yolks has been shown to survive the temperatures encountered during frying.[18] Some mushrooms, such as Agaricus bisporus and Agaricus subrufescens, are rare non-animal sources of CLA.[19][20]

However, dietary punicic acid—which is abundant in pomegranate seeds—is converted to the rumenic acid (which is 9Z11E-CLA) upon absorption in rats,[21] suggesting that non-animal sources can still effectively provide dietary CLA.

History

In 1979 CLAs were found to inhibit chemically-induced cancer in mice [22] and research on its biological activity has continued.[23]

In 2008, the United States Food and Drug Administration categorized CLA as generally recognized as safe (GRAS).[24]

See also

References

Wikiwand - on

Seamless Wikipedia browsing. On steroids.