Loading AI tools
Theorem in order theory and lattice theory From Wikipedia, the free encyclopedia
In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following:
The ascending Kleene chain of f is the chain
obtained by iterating f on the least element ⊥ of L. Expressed in a formula, the theorem states that
where denotes the least fixed point.
Although Tarski's fixed point theorem does not consider how fixed points can be computed by iterating f from some seed (also, it pertains to monotone functions on complete lattices), this result is often attributed to Alfred Tarski who proves it for additive functions.[1] Moreover, Kleene Fixed-Point Theorem can be extended to monotone functions using transfinite iterations.[2]
Source:[3]
We first have to show that the ascending Kleene chain of exists in . To show that, we prove the following:
As a corollary of the Lemma we have the following directed ω-chain:
From the definition of a dcpo it follows that has a supremum, call it What remains now is to show that is the least fixed-point.
First, we show that is a fixed point, i.e. that . Because is Scott-continuous, , that is . Also, since and because has no influence in determining the supremum we have: . It follows that , making a fixed-point of .
The proof that is in fact the least fixed point can be done by showing that any element in is smaller than any fixed-point of (because by property of supremum, if all elements of a set are smaller than an element of then also is smaller than that same element of ). This is done by induction: Assume is some fixed-point of . We now prove by induction over that . The base of the induction obviously holds: since is the least element of . As the induction hypothesis, we may assume that . We now do the induction step: From the induction hypothesis and the monotonicity of (again, implied by the Scott-continuity of ), we may conclude the following: Now, by the assumption that is a fixed-point of we know that and from that we get
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.