The Kantorovich theorem, or Newton–Kantorovich theorem, is a mathematical statement on the semi-local convergence of Newton's method. It was first stated by Leonid Kantorovich in 1948.[1][2] It is similar to the form of the Banach fixed-point theorem, although it states existence and uniqueness of a zero rather than a fixed point.[3]
Newton's method constructs a sequence of points that under certain conditions will converge to a solution of an equation or a vector solution of a system of equation . The Kantorovich theorem gives conditions on the initial point of this sequence. If those conditions are satisfied then a solution exists close to the initial point and the sequence converges to that point.[1][2]
Let be an open subset and a differentiable function with a Jacobian that is locally Lipschitz continuous (for instance if is twice differentiable). That is, it is assumed that for any there is an open subset such that and there exists a constant such that for any
holds. The norm on the left is the operator norm. In other words, for any vector the inequality
must hold.
Now choose any initial point . Assume that is invertible and construct the Newton step
The next assumption is that not only the next point but the entire ball is contained inside the set . Let be the Lipschitz constant for the Jacobian over this ball (assuming it exists).
As a last preparation, construct recursively, as long as it is possible, the sequences , , according to
Now if then
- a solution of exists inside the closed ball and
- the Newton iteration starting in converges to with at least linear order of convergence.
A statement that is more precise but slightly more difficult to prove uses the roots of the quadratic polynomial
- ,
and their ratio
Then
- a solution exists inside the closed ball
- it is unique inside the bigger ball
- and the convergence to the solution of is dominated by the convergence of the Newton iteration of the quadratic polynomial towards its smallest root ,[4] if , then
- The quadratic convergence is obtained from the error estimate[5]
In 1986, Yamamoto proved that the error evaluations of the Newton method such as Doring (1969), Ostrowski (1971, 1973),[6][7] Gragg-Tapia (1974), Potra-Ptak (1980),[8] Miel (1981),[9] Potra (1984),[10] can be derived from the Kantorovich theorem.[11]
There is a q-analog for the Kantorovich theorem.[12][13] For other generalizations/variations, see Ortega & Rheinboldt (1970).[14]
Oishi and Tanabe claimed that the Kantorovich theorem can be applied to obtain reliable solutions of linear programming.[15]