KCNH1

Protein-coding gene in the species Homo sapiens From Wikipedia, the free encyclopedia

KCNH1

Potassium voltage-gated channel subfamily H member 1 is a protein that in humans is encoded by the KCNH1 gene.[5][6][7]

Quick Facts Available structures, PDB ...
KCNH1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKCNH1, EAG, EAG1, Kv10.1, h-eag, TMBTS, ZLS1, hEAG1, potassium voltage-gated channel subfamily H member 1, hEAG
External IDsOMIM: 603305; MGI: 1341721; HomoloGene: 68242; GeneCards: KCNH1; OMA:KCNH1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002238
NM_172362

NM_001038607
NM_010600

RefSeq (protein)

NP_002229
NP_758872

NP_001033696
NP_034730

Location (UCSC)Chr 1: 210.68 – 211.13 MbChr 1: 191.87 – 192.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Close

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, subfamily H. This member is a pore-forming (alpha) subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. It is activated at the onset of myoblast differentiation. The gene is highly expressed in brain and in myoblasts. Overexpression of the gene may confer a growth advantage to cancer cells and favor tumor cell proliferation. Alternative splicing of this gene results in two transcript variants encoding distinct isoforms.[7]

Interactions

KCNH1 has been shown to interact with KCNB1.[8]

Function

The KCNH1 gene encodes a highly conserved voltage-gated potassium channel with predominant expression in the adult central nervous system.[9]

Pathologies

Gabbett and colleagues described Temple–Baraitser syndrome (TBS) in 2008, naming the condition after English clinical geneticists Profs Karen Temple and Michael Baraitser.[10] TBS is categorized by intellectual disabilities, epilepsy, typical facial features, and aplasia of the nails. It was demonstrated that de novo missense mutations in the KCNH1 gene cause deleterious gain of function in a voltage-gated potassium channel, resulting in the multisystem developmental disorder, and that mutational mosaicism present in the mothers of some probands was responsible for their children's TBS phenotype.[11] This is further evidence of the role that genetic mosaicism plays in the etiology of neurological disorders.

Type 1 Zimmermann–Laband syndrome was later found to be caused by similar mutations in KCNH1.[12] This has led some researchers to believe that type 1 Zimmermann-Laband and Temple-Baraitser syndromes are different manifestations of the same disorder.[13][14]

See also

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.