Partial lunar eclipse July 4, 1936 From Wikipedia, the free encyclopedia
A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 4, 1936,[1] with an umbral magnitude of 0.2668. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. The Moon's apparent diameter was near the average diameter because it occurred 6.8 days after apogee (on June 27, 1936, at 21:30 UTC) and 7.2 days before perigee (on July 11, 1936, at 22:05 UTC).[2]
Partial eclipse | |||||||||||||
Date | July 4, 1936 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gamma | 0.8642 | ||||||||||||
Magnitude | 0.2668 | ||||||||||||
Saros cycle | 138 (25 of 83) | ||||||||||||
Partiality | 116 minutes, 18 seconds | ||||||||||||
Penumbral | 289 minutes, 31 seconds | ||||||||||||
| |||||||||||||
The eclipse was completely visible over south and east Asia, Australia, and Antarctica, seen rising over Africa, Europe, and west and central Asia and setting over northeast Asia and the central Pacific Ocean.[3]
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 1.27781 |
Umbral Magnitude | 0.26679 |
Gamma | 0.86423 |
Sun Right Ascension | 06h54m24.6s |
Sun Declination | +22°51'29.8" |
Sun Semi-Diameter | 15'43.8" |
Sun Equatorial Horizontal Parallax | 08.6" |
Moon Right Ascension | 18h53m44.0s |
Moon Declination | -22°03'02.9" |
Moon Semi-Diameter | 15'33.6" |
Moon Equatorial Horizontal Parallax | 0°57'06.2" |
ΔT | 23.8 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
June 19 Descending node (new moon) | July 4 Ascending node (full moon) |
---|---|
Total solar eclipse Solar Saros 126 | Partial lunar eclipse Lunar Saros 138 |
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on March 12, 1933 and September 4, 1933 occur in the previous lunar year eclipse set.
Lunar eclipse series sets from 1933 to 1936 | ||||||||
---|---|---|---|---|---|---|---|---|
Descending node | Ascending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
103 | 1933 Feb 10 |
Penumbral |
1.5600 | 108 | 1933 Aug 05 |
Penumbral |
−1.4216 | |
113 | 1934 Jan 30 |
Partial |
0.9258 | 118 | 1934 Jul 26 |
Partial |
−0.6681 | |
123 | 1935 Jan 19 |
Total |
0.2498 | 128 | 1935 Jul 16 |
Total |
0.0672 | |
133 | 1936 Jan 08 |
Total |
−0.4429 | 138 | 1936 Jul 04 |
Partial |
0.8642 | |
143 | 1936 Dec 28 |
Penumbral |
−1.0971 |
This eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 82 events. The series started with a penumbral lunar eclipse on October 15, 1521. It contains partial eclipses from June 24, 1918 through August 28, 2026; total eclipses from September 7, 2044 through June 8, 2495; and a second set of partial eclipses from June 19, 2513 through August 13, 2603. The series ends at member 82 as a penumbral eclipse on March 30, 2982.
The longest duration of totality will be produced by member 48 at 105 minutes, 24 seconds on March 24, 2369. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series will occur on 2369 Mar 24, lasting 105 minutes, 24 seconds.[7] | Penumbral | Partial | Total | Central |
1521 Oct 15 |
1918 Jun 24 |
2044 Sep 07 |
2116 Oct 21 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2441 May 06 |
2495 Jun 08 |
2603 Aug 13 |
2982 Mar 30 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 17–38 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
17 | 18 | 19 | |||
1810 Apr 19 | 1828 Apr 29 | 1846 May 11 | |||
20 | 21 | 22 | |||
1864 May 21 | 1882 Jun 01 | 1900 Jun 13 | |||
23 | 24 | 25 | |||
1918 Jun 24 | 1936 Jul 04 | 1954 Jul 16 | |||
26 | 27 | 28 | |||
1972 Jul 26 | 1990 Aug 06 | 2008 Aug 16 | |||
29 | 30 | 31 | |||
2026 Aug 28 | 2044 Sep 07 | 2062 Sep 18 | |||
32 | 33 | 34 | |||
2080 Sep 29 | 2098 Oct 10 | 2116 Oct 21 | |||
35 | 36 | 37 | |||
2134 Nov 02 | 2152 Nov 12 | 2170 Nov 23 | |||
38 | |||||
2188 Dec 04 | |||||
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2132 | |||||||||
---|---|---|---|---|---|---|---|---|---|
1805 Jul 11 (Saros 126) |
1816 Jun 10 (Saros 127) |
1827 May 11 (Saros 128) |
1838 Apr 10 (Saros 129) |
1849 Mar 09 (Saros 130) | |||||
1860 Feb 07 (Saros 131) |
1871 Jan 06 (Saros 132) |
1881 Dec 05 (Saros 133) |
1892 Nov 04 (Saros 134) |
1903 Oct 06 (Saros 135) | |||||
1914 Sep 04 (Saros 136) |
1925 Aug 04 (Saros 137) |
1936 Jul 04 (Saros 138) |
1947 Jun 03 (Saros 139) |
1958 May 03 (Saros 140) | |||||
1969 Apr 02 (Saros 141) |
1980 Mar 01 (Saros 142) |
1991 Jan 30 (Saros 143) |
2001 Dec 30 (Saros 144) |
2012 Nov 28 (Saros 145) | |||||
2023 Oct 28 (Saros 146) |
2034 Sep 28 (Saros 147) |
2045 Aug 27 (Saros 148) |
2056 Jul 26 (Saros 149) |
2067 Jun 27 (Saros 150) | |||||
2132 Dec 22 (Saros 156) | |||||||||
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 145.
Seamless Wikipedia browsing. On steroids.