Intensity measure
From Wikipedia, the free encyclopedia
From Wikipedia, the free encyclopedia
In probability theory, an intensity measure is a measure that is derived from a random measure. The intensity measure is a non-random measure and is defined as the expectation value of the random measure of a set, hence it corresponds to the average volume the random measure assigns to a set. The intensity measure contains important information about the properties of the random measure. A Poisson point process, interpreted as a random measure, is for example uniquely determined by its intensity measure. [1]
Let be a random measure on the measurable space and denote the expected value of a random element with .
The intensity measure
of is defined as
Note the difference in notation between the expectation value of a random element , denoted by and the intensity measure of the random measure , denoted by .
The intensity measure is always s-finite and satisfies
for every positive measurable function on .[3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.