In geometry, the truncated order-4 apeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{∞,4}.

Truncated order-4 apeirogonal tiling
Truncated order-4 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration4..
Schläfli symbolt{,4}
tr{,} or
Wythoff symbol2 4 |
2 |
Coxeter diagram
or
Symmetry group[,4], (*42)
[,], (*2)
DualInfinite-order tetrakis square tiling
PropertiesVertex-transitive

Uniform colorings

A half symmetry coloring is tr{∞,∞}, has two types of apeirogons, shown red and yellow here. If the apeirogonal curvature is too large, it doesn't converge to a single ideal point, like the right image, red apeirogons below. Coxeter diagram are shown with dotted lines for these divergent, ultraparallel mirrors.



(Vertex centered)


(Square centered)

Symmetry

From [∞,∞] symmetry, there are 15 small index subgroup by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as ∞42 symmetry by adding a mirror bisecting the fundamental domain. The subgroup index-8 group, [1+,∞,1+,∞,1+] (∞∞∞∞) is the commutator subgroup of [∞,∞].

More information Index, Diagram ...
Small index subgroups of [∞,∞] (*∞∞2)
Index 1 2 4
Diagram Thumb Thumb Thumb Thumb Thumb Thumb
Coxeter [∞,∞]
=
[1+,∞,∞]
=
[∞,∞,1+]
=
[∞,1+,∞]
=
[1+,∞,∞,1+]
=
[∞+,∞+]
Orbifold *∞∞2 *∞∞∞ *∞2∞2 *∞∞∞∞ ∞∞×
Semidirect subgroups
Diagram Thumb Thumb Thumb Thumb Thumb
Coxeter [∞,∞+]
[∞+,∞]
[(∞,∞,2+)]
[∞,1+,∞,1+]
= =
= =
[1+,∞,1+,∞]
= =
= =
Orbifold ∞*∞ 2*∞∞ ∞*∞∞
Direct subgroups
Index 2 4 8
Diagram Thumb Thumb Thumb Thumb Thumb
Coxeter [∞,∞]+
=
[∞,∞+]+
=
[∞+,∞]+
=
[∞,1+,∞]+
=
[∞+,∞+]+ = [1+,∞,1+,∞,1+]
= = =
Orbifold ∞∞2 ∞∞∞ ∞2∞2 ∞∞∞∞
Radical subgroups
Index
Diagram Thumb Thumb Thumb Thumb
Coxeter [∞,∞*]
[∞*,∞]
[∞,∞*]+
[∞*,∞]+
Orbifold *∞
Close
More information Symmetry*n42 [n,4], Spherical ...
*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4..
n-kis
figures
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4..
Close
More information Dual figures, Alternations ...
Paracompact uniform tilings in [,4] family
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)

=

=
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Thumb Thumb Thumb Thumb
Alternation duals
Thumb Thumb
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.
Close
More information Dual tilings, Alternations ...
Paracompact uniform tilings in [,] family

=
=

=
=

=
=

=
=

=
=

=

=
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V V.. V(.)2 V.. V V4..4. V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
Thumb Thumb Thumb Thumb Thumb Thumb
h{,} s{,} hr{,} s{,} h2{,} hrr{,} sr{,}
Alternation duals
Thumb Thumb Thumb Thumb
V(.) V(3.)3 V(.4)4 V(3.)3 V V(4..4)2 V3.3..3.
Close

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.