Hasse–Arf theorem

On jumps of upper numbering filtration of the Galois group of a finite Galois extension From Wikipedia, the free encyclopedia

In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse,[1][2] and the general result was proved by Cahit Arf.[3][4]

Statement

Summarize
Perspective

Higher ramification groups

The theorem deals with the upper numbered higher ramification groups of a finite abelian extension . So assume is a finite Galois extension, and that is a discrete normalised valuation of K, whose residue field has characteristic p > 0, and which admits a unique extension to L, say w. Denote by the associated normalised valuation ew of L and let be the valuation ring of L under . Let have Galois group G and define the s-th ramification group of for any real s  1 by

So, for example, G1 is the Galois group G. To pass to the upper numbering one has to define the function ψL/K which in turn is the inverse of the function ηL/K defined by

The upper numbering of the ramification groups is then defined by Gt(L/K) = Gs(L/K) where s = ψL/K(t).

These higher ramification groups Gt(L/K) are defined for any real t  1, but since vL is a discrete valuation, the groups will change in discrete jumps and not continuously. Thus we say that t is a jump of the filtration {Gt(L/K) : t  1} if Gt(L/K)  Gu(L/K) for any u > t. The Hasse–Arf theorem tells us the arithmetic nature of these jumps.

Statement of the theorem

With the above set up, the theorem states that the jumps of the filtration {Gt(L/K) : t  1} are all rational integers.[4][5]

Example

Suppose G is cyclic of order , residue characteristic and be the subgroup of of order . The theorem says that there exist positive integers such that

...
[4]

Non-abelian extensions

Summarize
Perspective

For non-abelian extensions the jumps in the upper filtration need not be at integers. Serre gave an example of a totally ramified extension with Galois group the quaternion group of order 8 with

The upper numbering then satisfies

  •   for
  •   for
  •   for

so has a jump at the non-integral value .

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.