Glycineamide ribonucleotide
Chemical compound From Wikipedia, the free encyclopedia
Glycinamide ribonucleotide (or GAR) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA.[1][2][3] The vitamins thiamine[4] and cobalamin[5] also contain fragments derived from GAR.[6]
![]() | |
Names | |
---|---|
IUPAC name
(1R)-1,4-Anhydro-1-glycinamido-D-ribitol 5-(dihydrogen phosphate) | |
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(2-Aminoacetamido)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate | |
Other names
Glycinamide ribotide, GAR | |
Identifiers | |
3D model (JSmol) |
|
ChEBI | |
ChemSpider | |
KEGG | |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C7H15N2O8P | |
Molar mass | 286.177 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
GAR is the product of the enzyme phosphoribosylamine—glycine ligase acting on phosphoribosylamine (PRA) to combine it with glycine in a process driven by ATP. The reaction, EC 6.3.4.13 forms an amide bond:[7]
- PRA + glycine + ATP → GAR + ADP + Pi
The biosynthesis pathway next adds a formyl group from 10-formyltetrahydrofolate to GAR, catalysed by phosphoribosylglycinamide formyltransferase in reaction EC 2.1.2.2 and producing formylglycinamide ribotide (FGAR):[7]
- GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.