Loading AI tools
Deliberate and large-scale intervention in Earth's climate system From Wikipedia, the free encyclopedia
Climate engineering (or geoengineering, climate intervention[1]) is the intentional large-scale alteration of the planetary environment to counteract anthropogenic climate change.[2][3] The term has been used as an umbrella term for both carbon dioxide removal and solar radiation modification when applied at a planetary scale.[4]: 168 However, these two processes have very different characteristics, and are now often discussed separately.[4]: 168 [5] Carbon dioxide removal techniques remove carbon dioxide from the atmosphere, and are part of climate change mitigation. Solar radiation modification is the reflection of some sunlight (solar radiation) back to space to cool the earth.[6] Some publications include passive radiative cooling as a climate engineering technology. The media tends to also use climate engineering for other technologies such as glacier stabilization, ocean liming, and iron fertilization of oceans. The latter would modify carbon sequestration processes that take place in oceans.
Some types of climate engineering are highly controversial due to the large uncertainties around effectiveness, side effects and unforeseen consequences.[7] Interventions at large scale run a greater risk of unintended disruptions of natural systems, resulting in a dilemma that such disruptions might be more damaging than the climate damage that they offset.[8] However, the risks of such interventions must be seen in the context of the trajectory of climate change without them.[9][8][10]
The Union of Concerned Scientists warns that solar radiation modification could become an excuse to slow reductions in fossil fuel emissions and stall progress toward a low-carbon economy, as the technology does not address these root causes of climate change.[11]
Climate engineering (or geoengineering) has been used as an umbrella term for both carbon dioxide removal and solar radiation management, when applied at a planetary scale.[4]: 168 However, these two methods have very different geophysical characteristics, which is why the Intergovernmental Panel on Climate Change no longer uses this term.[4]: 168 [5] This decision was communicated in around 2018, see for example the Special Report on Global Warming of 1.5 °C.[12]: 550
According to climate economist Gernot Wagner the term geoengineering is "largely an artefact and a result of the term's frequent use in popular discourse" and "so vague and all-encompassing as to have lost much meaning".[7]: 14
Specific technologies that fall into the climate engineering umbrella term include:[13]: 30
The following methods are not termed climate engineering in the latest IPCC assessment report in 2022[4]: 6–11 but are included under this umbrella term by other publications on this topic:[25][7]
Carbon dioxide removal (CDR) is a process in which carbon dioxide (CO2) is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products.[37]: 2221 This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies.[38][39] Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR ("CDR is what puts the net into net zero emissions"[40]). In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.[41]: 114
CDR includes methods that are implemented on land or in aquatic systems. Land-based methods include afforestation, reforestation, agricultural practices that sequester carbon in soils (carbon farming), bioenergy with carbon capture and storage (BECCS), and direct air capture combined with storage.[41][42] There are also CDR methods that use oceans and other water bodies. Those are called ocean fertilization, ocean alkalinity enhancement,[43] wetland restoration and blue carbon approaches.[41] A detailed analysis needs to be performed to assess how much negative emissions a particular process achieves. This analysis includes life cycle analysis and "monitoring, reporting, and verification" (MRV) of the entire process.[44] Carbon capture and storage (CCS) are not regarded as CDR because CCS does not reduce the amount of carbon dioxide already in the atmosphere.Solar radiation modification (SRM) (or solar radiation management or solar geoengineering), is a group of large-scale approaches to limit global warming by increasing the amount of sunlight (solar radiation) that is reflected away from Earth and back to space. Among the potential approaches, stratospheric aerosol injection (SAI) is the most-studied[45]: 350 , followed by marine cloud brightening (MCB); others such as ground- and space-based show less potential or feasibility and receive less attention. SRM could be a supplement to climate change mitigation and adaptation measures,[46] but would not be a substitute for reducing greenhouse gas emissions. SRM is a form of climate engineering or geoengineering.
Scientific studies, based on evidence from climate models, have consistently shown that some forms of SRM could reduce global warming and many effects of climate change.[47][48][49] However, because warming from greenhouse gases and cooling from SRM would operate differently across latitudes and seasons, a world where global warming would be offset by SRM would have a different climate from one where this warming did not occur in the first place. SRM would therefore pose environmental risks, as would a warmed world without SRM. Confidence in the current projections of how SRM would affect regional climate and ecosystems is low.[46] Furthermore, a suboptimal implementation of SRM--such as starting or stopping suddenly, or intervening too strongly in the Earth's energy balance--would increase environmental risks.Enhancing the solar reflectance and thermal emissivity of Earth in the atmospheric window through passive daytime radiative cooling has been proposed as an alternative or "third approach" to climate engineering[26][50] that is "less intrusive" and more predictable or reversible than stratospheric aerosol injection.[51]
Ocean geoengineering involves modifying the ocean to reduce the impacts of rising temperature. One approach is to add material such as lime or iron to the ocean to increase its ability to support marine life and/or sequester CO
2. In 2021 the US National Academies of Sciences, Engineering, and Medicine (NASEM) requested $2.5 billion funds for research in the following decade, specifically including field tests.[34]
Another idea is to reduce sea level rise by installing underwater "curtains" to protect Antarctic glaciers from warming waters, or by drilling holes in ice to pump out water and heat.[65]
Enriching seawater with calcium hydroxide (lime) has been reported to lower ocean acidity, which reduces pressure on marine life such as oysters and absorbs CO
2. The added lime raised the water's pH, capturing CO
2 in the form of calcium bicarbonate or as carbonate deposited in mollusk shells. Lime is produced in volume for the cement industry.[34] This was assessed in 2022 in an experiment in Apalachicola, Florida in an attempt to halt declining oyster populations. pH levels increased modestly, as CO
2 was reduced by 70 ppm.[34]
A 2014 experiment added sodium hydroxide (lye) to part of Australia's Great Barrier Reef. It raised pH levels to nearly preindustrial levels.[34]
However, producing alkaline materials typically releases large amounts of CO
2, partially offsetting the sequestration. Alkaline additives become diluted and dispersed in one month, without durable effects, such that if necessary, the program could be ended without leaving long-term effects.[34]
Enhancing the natural marine sulfur cycle by fertilizing a small portion with iron—typically considered to be a greenhouse gas remediation method—may also increase the reflection of sunlight.[66][67] Such fertilization, especially in the Southern Ocean, would enhance dimethyl sulfide production and consequently cloud reflectivity. This could potentially be used as regional SRM, to slow Antarctic ice from melting.[citation needed] Such techniques also tend to sequester carbon, but the enhancement of cloud albedo also appears to be a likely effect.
Another 2022 experiment attempted to sequester carbon using giant kelp planted off the Namibian coast.[34] Whilst this approach has been called ocean geoengineering by the researchers it is just another form of carbon dioxide removal via sequestration. Another term that is used to describe this process is blue carbon management and also marine geoengineering.
Some engineering interventions have been proposed for Thwaites Glacier and the nearby Pine Island Glacier to physically stabilize its ice or to preserve it. These interventions would block the flow of warm ocean water, which currently renders the collapse of these two glaciers practically inevitable even without further warming.[68][69] A proposal from 2018 included building sills at the Thwaites' grounding line to either physically reinforce it, or to block some fraction of warm water flow. The former would be the simplest intervention, yet equivalent to "the largest civil engineering projects that humanity has ever attempted". It is also only 30% likely to work. Constructions blocking even 50% of the warm water flow are expected to be far more effective, yet far more difficult as well.[70] Some researchers argued that this proposal could be ineffective, or even accelerate sea level rise.[71] The authors of the original proposal suggested attempting this intervention on smaller sites, like the Jakobshavn Glacier in Greenland, as a test.[70][69] They also acknowledged that this intervention cannot prevent sea level rise from the increased ocean heat content, and would be ineffective in the long run without greenhouse gas emission reductions.[70]
In 2023, it was proposed that an installation of underwater curtains, made of a flexible material and anchored to the Amundsen Sea floor would be able to interrupt warm water flow. This approach would reduce costs and increase the longevity of the material (conservatively estimated at 25 years for curtain elements and up to 100 years for the foundations) relative to more rigid structures. With them in place, Thwaites Ice Shelf and Pine Island Ice Shelf would presumably regrow to a state they last had a century ago, thus stabilizing these glaciers.[72][73][69] To achieve this, the curtains would have to be placed at a depth of around 600 metres (0.37 miles) (to avoid damage from icebergs which would be regularly drifting above) and be 80 km (50 mi) long. The authors acknowledged that while work on this scale would be unprecedented and face many challenges in the Antarctic (including polar night and the currently insufficient numbers of specialized polar ships and underwater vessels), it would also not require any new technology and there is already experience of laying down pipelines at such depths.[72][73]Interventions at large scale run a greater risk of unintended disruptions of natural systems, alongside a greater potential for reducing the risks of warming. This raises a question of whether climate interventions might be more or less damaging than the climate damage that they offset.[8]
Matthew Watson, of the University of Bristol, led a £5m research study into the potential adverse effects of climate engineering and said in 2014, "We are sleepwalking to a disaster with climate change. Cutting emissions is undoubtedly the thing we should be focusing on but it seems to be failing. Although geoengineering is terrifying to many people, and I include myself in this, [its feasibility and safety] are questions that have to be answered".[74] University of Oxford Professor Steve Rayner is also worried about the adverse effects of climate engineering, especially the potential for people to be too positive about the effects and stop trying to slow the actual problem of climate change. Though, he says there is a potential reason to doing climate engineering: "People decry doing [climate engineering] as a band aid, but band aids are useful when you are healing".[74]
Climate engineering may reduce the urgency of reducing carbon emissions, a form of moral hazard.[75] Also, some approaches would have only temporary effects, which implies rapid rebound if they are not sustained.[76] The Union of Concerned Scientists points to the concern that the use of climate engineering technology might become an excuse not to address the root causes of climate change.[11] However, several public opinion surveys and focus groups reported either a desire to increase emission cuts in the presence of climate engineering, or no effect.[77][78][79] Other modelling work suggests that the prospect of climate engineering may in fact increase the likelihood of emissions reduction.[80][81][82][83]
If climate engineering can alter the climate, then this raises questions whether humans have the right to deliberately change the climate, and under what conditions. For example, using climate engineering to stabilize temperatures is not the same as doing so to optimize the climate for some other purpose. Some religious traditions express views on the relationship between humans and their surroundings that encourage (to conduct responsible stewardship) or discourage (to avoid hubris) explicit actions to affect climate.[84]
A large 2018 study used an online survey to investigate public perceptions of six climate engineering methods in the United States, United Kingdom, Australia, and New Zealand.[13] Public awareness of climate engineering was low; less than a fifth of respondents reported prior knowledge. Perceptions of the six climate engineering methods proposed (three from the carbon dioxide removal group and three from the solar radiation modification group) were largely negative and frequently associated with attributes like 'risky', 'artificial' and 'unknown effects'. Carbon dioxide removal methods were preferred over solar radiation modification. Public perceptions were remarkably stable with only minor differences between the different countries in the surveys.[13][85]
Some environmental organizations (such as Friends of the Earth and Greenpeace) have been reluctant to endorse or oppose solar radiation modification, but are often more supportive of nature-based carbon dioxide removal projects, such as afforestation and peatland restoration.[75][86]
Several organizations have investigated climate engineering with a view to evaluating its potential, including the US Congress,[87] the US National Academy of Sciences, Engineering, and Medicine,[88] the Royal Society,[89] the UK Parliament,[90] the Institution of Mechanical Engineers,[91] and the Intergovernmental Panel on Climate Change.
In 2009, the Royal Society in the UK reviewed a wide range of proposed climate engineering methods and evaluated them in terms of effectiveness, affordability, timeliness, and safety (assigning qualitative estimates in each assessment). The key recommendations reports were that "Parties to the UNFCCC should make increased efforts towards mitigating and adapting to climate change, and in particular to agreeing to global emissions reductions", and that "[nothing] now known about geoengineering options gives any reason to diminish these efforts".[92] Nonetheless, the report also recommended that "research and development of climate engineering options should be undertaken to investigate whether low-risk methods can be made available if it becomes necessary to reduce the rate of warming this century".[92]
In 2009, a review examined the scientific plausibility of proposed methods rather than the practical considerations such as engineering feasibility or economic cost. The authors found that "[air] capture and storage shows the greatest potential, combined with afforestation, reforestation and bio-char production", and noted that "other suggestions that have received considerable media attention, in particular, "ocean pipes" appear to be ineffective".[93] They concluded that "[climate] geoengineering is best considered as a potential complement to the mitigation of CO2 emissions, rather than as an alternative to it".[93]
The IMechE report examined a small subset of proposed methods (air capture, urban albedo and algal-based CO2 capture techniques), and its main conclusions in 2011 were that climate engineering should be researched and trialed at the small scale alongside a wider decarbonization of the economy.[91]
In 2015, the US National Academy of Sciences, Engineering, and Medicine concluded a 21-month project to study the potential impacts, benefits, and costs of climate engineering. The differences between these two classes of climate engineering "led the committee to evaluate the two types of approaches separately in companion reports, a distinction it hopes carries over to future scientific and policy discussions."[94][95][96] The resulting study titled Climate Intervention was released in February 2015 and consists of two volumes: Reflecting Sunlight to Cool Earth[97] and Carbon Dioxide Removal and Reliable Sequestration.[98]
In June 2023 the US government released a report that recommended conducting research on stratospheric aerosol injection and marine cloud brightening.[99]
As of 2024 the Coastal Atmospheric Aerosol Research and Engagement (CAARE) project was launching sea salt into the marine sky in an effort to increase cloud "brightness" (reflective capacity). The sea salt is launched from the USS Hornet Sea, Air & Space Museum (based on the project's regulatory filings).[100]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.