Remove ads
Bendable concrete From Wikipedia, the free encyclopedia
Engineered Cementitious Composite (ECC), also called Strain Hardening Cement-based Composites (SHCC) or more popularly as bendable concrete, is an easily molded mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers.[1] Unlike regular concrete, ECC has a tensile strain capacity in the range of 3–7%,[1] compared to 0.01% for ordinary portland cement (OPC) paste, mortar or concrete. ECC therefore acts more like a ductile metal material rather than a brittle glass material (as does OPC concrete), leading to a wide variety of applications.
ECC, unlike common fiber reinforced concrete, is a family of micromechanically designed materials.[2][3] As long as a cementitious material is designed/developed based on micromechanics and fracture mechanics theory to feature large tensile ductility, it can be called an ECC. Therefore, ECC is not a fixed material design, but a broad range of topics under different stages of research, development, and implementations. The ECC material family is expanding. The development of an individual mix design of ECC requires special efforts by systematically engineering of the material at nano-, micro-, macro- and composite scales.
ECC looks similar to ordinary Portland cement-based concrete, except that it can deform (or bend) under strain.[1] A number of research groups are developing ECC science, including those at the University of Michigan, University of California, Irvine, Delft University of Technology, the University of Tokyo, the Czech Technical University, University of British Columbia, and Stanford University. Traditional concrete's lack of durability and failure under strain, both stemming from brittle behavior, have been a pushing factor in the development of ECC.
ECC has a variety of unique properties, including tensile properties superior to other fiber-reinforced composites, ease of processing on par with conventional cement, the use of only a small volume fraction of fibers (~ 2%), tight crack width, and a lack of anisotropically weak planes.[4] These properties are due largely to the interaction between the fibers and cementing matrix, which can be custom-tailored through micromechanics design. Essentially, the fibers create many microcracks with a very specific width, rather than a few very large cracks (as in conventional concrete.) This allows ECC to deform without catastrophic failure.
This microcracking behavior leads to superior corrosion resistance (the cracks are so small and numerous that it is difficult for aggressive media to penetrate and attack the reinforcing steel) as well as to self-healing.[5][6][7] In the presence of water (during a rainstorm, for instance) unreacted cement particles recently exposed due to cracking hydrate and form a number of products (calcium silicate hydrates (C-S-H), calcite, etc.) that expand and fill in the crack. These products appear as a white ‘scar’ material filling in the crack. This self-healing behavior not only seals the crack to prevent transport of fluids, but mechanical properties are regained. This self-healing has been observed in a variety of conventional cement and concretes; however, above a certain crack width self healing becomes less effective. It is the tightly controlled crack widths seen in ECC that ensure all cracks thoroughly heal when exposed to the natural environment.
When combined with a more conductive material, all cement materials can increase in conductivity and be used for damage-sensing. This is essentially based on the fact that conductivity will change as damage occurs; the addition of conductive material is meant to raise the conductivity to a level where such changes will be easily identified. Though not a material property of ECC itself, semi-conductive ECC for damage-sensing [8][9] are being developed.
There are a number of different varieties of ECC, including:
ECC have found use in a number of large-scale applications in Japan, Korea, Switzerland, Australia and the U.S.[3]. These include:
Properties | FRC | Common HPFRCC | ECC |
---|---|---|---|
Design Methodology | N.A. | Use high Vf | Micromechanics based, minimize Vf for cost and processibility |
Fiber | Any type, Vf usually less than 2%; df for steel ~ 500 micrometre | Mostly steel, Vf usually > 5%; df ~ 150 micrometre | Tailored, polymer fibers, Vf usually less than 2%; df < 50 micrometre |
Matrix | Coarse aggregates | Fine aggregates | Controlled for matrix toughness, flaw size; fine sand |
Interface | Not controlled | Not controlled | Chemical and frictional bonds controlled for bridging properties |
Mechanical Properties | Strain-softening: | Strain-hardening: | Strain-hardening: |
Tensile strain | 0.1% | <1.5% | >3% (typical); 8% max |
Crack width | Unlimited | Typically several hundred micrometres, unlimited beyond 1.5% strain | Typically < 100 micrometres during strain-hardening[1] |
Note: FRC=Fiber-Reinforced Cement. HPFRCC=High-Performance Fiber Reinforced Cementitious Composites
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.