Elongated triangular gyrobicupola

36th Johnson solid From Wikipedia, the free encyclopedia

Elongated triangular gyrobicupola

In geometry, the elongated triangular gyrobicupola is a polyhedron constructed by attaching two regular triangular cupolas to the base of a regular hexagonal prism, with one of them rotated in . It is an example of Johnson solid.

Quick Facts Type, Faces ...
Elongated triangular gyrobicupola
Thumb
TypeJohnson
J35J36J37
Faces8 triangles
12 squares
Edges36
Vertices18
Vertex configuration
Symmetry group
Propertiesconvex
Net
Thumb
Close

Construction

The elongated triangular gyrobicupola is similarly can be constructed as the elongated triangular orthobicupola, started from a hexagonal prism by attaching two regular triangular cupolae onto its base, covering its hexagonal faces.[1] This construction process is known as elongation, giving the resulting polyhedron has 8 equilateral triangles and 12 squares.[2] The difference between those two polyhedrons is one of two triangular cupolas in the elongated triangular gyrobicupola is rotated in . A convex polyhedron in which all faces are regular is Johnson solid, and the elongated triangular gyrobicupola is one among them, enumerated as 36th Johnson solid .[3]

Properties

An elongated triangular gyrobicupola with a given edge length has a surface area by adding the area of all regular faces:[2] Its volume can be calculated by cutting it off into two triangular cupolae and a hexagonal prism with regular faces, and then adding their volumes up:[2]

Its three-dimensional symmetry groups is the prismatic symmetry, the dihedral group of order 12.[clarification needed] Its dihedral angle can be calculated by adding the angle of the triangular cupola and hexagonal prism. The dihedral angle of a hexagonal prism between two adjacent squares is the internal angle of a regular hexagon , and that between its base and square face is . The dihedral angle of a regular triangular cupola between each triangle and the hexagon is approximately , that between each square and the hexagon is , and that between square and triangle is . The dihedral angle of an elongated triangular orthobicupola between the triangle-to-square and square-to-square, on the edge where the triangular cupola and the prism is attached, is respectively:[4]

The elongated triangular gyrobicupola forms space-filling honeycombs with tetrahedra and square pyramids.[5]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.