E-graph
Graph data structure From Wikipedia, the free encyclopedia
In computer science, an e-graph is a data structure that stores an equivalence relation over terms of some language.
Definition and operations
Summarize
Perspective
Let be a set of uninterpreted functions, where is the subset of consisting of functions of arity . Let be a countable set of opaque identifiers that may be compared for equality, called e-class IDs. The application of to e-class IDs is denoted and called an e-node.
The e-graph then represents equivalence classes of e-nodes, using the following data structures:[1]
- A union-find structure representing equivalence classes of e-class IDs, with the usual operations , and . An e-class ID is canonical if ; an e-node is canonical if each is canonical ( in ).
- An association of e-class IDs with sets of e-nodes, called e-classes. This consists of
- a hashcons (i.e. a mapping) from canonical e-nodes to e-class IDs, and
- an e-class map that maps e-class IDs to e-classes, such that maps equivalent IDs to the same set of e-nodes:
Invariants
In addition to the above structure, a valid e-graph conforms to several data structure invariants.[2] Two e-nodes are equivalent if they are in the same e-class. The congruence invariant states that an e-graph must ensure that equivalence is closed under congruence, where two e-nodes are congruent when . The hashcons invariant states that the hashcons maps canonical e-nodes to their e-class ID.
Operations
![]() | This section needs expansion. You can help by adding to it. (June 2021) |
E-graphs expose wrappers around the , , and operations from the union-find that preserve the e-graph invariants. The last operation, e-matching, is described below.
Equivalent formulations
An e-graph can also be formulated as a bipartite graph where
- is the set of e-class IDs (as above),
- is the set of e-nodes, and
- is a set of directed edges.
There is a directed edge from each e-class to each of its members, and from each e-node to each of its children.[3]
E-matching
Let be a set of variables and let be the smallest set that includes the 0-arity function symbols (also called constants), includes the variables, and is closed under application of the function symbols. In other words, is the smallest set such that , , and when and , then . A term containing variables is called a pattern, a term without variables is called ground.
An e-graph represents a ground term if one of its e-classes represents . An e-class represents if some e-node does. An e-node represents a term if and each e-class represents the term ( in ).
e-matching is an operation that takes a pattern and an e-graph , and yields all pairs where is a substitution mapping the variables in to e-class IDs and is an e-class ID such that the term is represented by . There are several known algorithms for e-matching,[4][5] the relational e-matching algorithm is based on worst-case optimal joins and is worst-case optimal.[6]
Extraction
Given an e-class and a cost function that maps each function symbol in to a natural number, the extraction problem is to find a ground term with minimal total cost that is represented by the given e-class. This problem is NP-hard.[7] There is also no constant-factor approximation algorithm for this problem, which can be shown by reduction from the set cover problem. However, for graphs with bounded treewidth, there is a linear-time, fixed-parameter tractable algorithm.[8]
Complexity
- An e-graph with n equalities can be constructed in O(n log n) time.[9]
Equality saturation
![]() | This section needs expansion. You can help by adding to it. (June 2021) |
Equality saturation is a technique for building optimizing compilers using e-graphs.[10] It operates by applying a set of rewrites using e-matching until the e-graph is saturated, a timeout is reached, an e-graph size limit is reached, a fixed number of iterations is exceeded, or some other halting condition is reached. After rewriting, an optimal term is extracted from the e-graph according to some cost function, usually related to AST size or performance considerations.
Applications
E-graphs are used in automated theorem proving. They are a crucial part of modern SMT solvers such as Z3[11] and CVC4, where they are used to decide the empty theory by computing the congruence closure of a set of equalities, and e-matching is used to instantiate quantifiers.[12] In DPLL(T)-based solvers that use conflict-driven clause learning (also known as non-chronological backtracking), e-graphs are extended to produce proof certificates.[13] E-graphs are also used in the Simplify theorem prover of ESC/Java.[14]
Equality saturation is used in specialized optimizing compilers,[15] e.g. for deep learning[16] and linear algebra.[17] Equality saturation has also been used for translation validation applied to the LLVM toolchain.[18]
E-graphs have been applied to several problems in program analysis, including fuzzing,[19] abstract interpretation,[20] and library learning.[21]
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.