Loading AI tools
From Wikipedia, the free encyclopedia
In mathematics, the Davenport constant D(G ) is an invariant of a group studied in additive combinatorics, quantifying the size of nonunique factorizations. Given a finite abelian group G, D(G ) is defined as the smallest number such that every sequence of elements of that length contains a non-empty subsequence adding up to 0. In symbols, this is[1]
This article needs additional citations for verification. (May 2013) |
The original motivation for studying Davenport's constant was the problem of non-unique factorization in number fields. Let be the ring of integers in a number field, G its class group. Then every element , which factors into at least D(G ) non-trivial ideals, is properly divisible by an element of . This observation implies that Davenport's constant determines by how much the lengths of different factorization of some element in can differ.[5][citation needed]
The upper bound mentioned above plays an important role in Ahlford, Granville and Pomerance's proof of the existence of infinitely many Carmichael numbers.[4]
Olson's constant O(G ) uses the same definition, but requires the elements of to be distinct.[6]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.