DNA clamp

Protein family From Wikipedia, the free encyclopedia

DNA clamp

A DNA clamp, also known as a sliding clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.[2]

Thumb
Thumb
Top and side views of a homotrimer of the human PCNA sliding clamp (rainbow colored, N-terminus = blue, C-terminus = red) with double stranded DNA modeled through the central pore (magenta).[1]
Thumb
Cryo-EM structure of the DNA-bound PolD–PCNA processive complex
Thumb
Structural basis for DNA binding by the PolD–PCNA complex

Structure

Summarize
Perspective

The DNA clamp is an α+β protein that assembles into a multimeric, six-domain ring structure that completely encircles the DNA double helix as the polymerase adds nucleotides to the growing strand.[3] Each domain is in turn made of two β-α-β-β-β structural repeats.[4] The DNA clamp assembles on the DNA at the replication fork and "slides" along the DNA with the advancing polymerase, aided by a layer of water molecules in the central pore of the clamp between the DNA and the protein surface. Because of the toroidal shape of the assembled multimer, the clamp cannot dissociate from the template strand without also dissociating into monomers.

The DNA clamp fold is found in bacteria, archaea, eukaryotes and some viruses. In bacteria, the sliding clamp is a homodimer composed of two identical beta subunits of DNA polymerase III and hence is referred to as the beta clamp. In archaea[5] and eukaryotes, it is a trimer composed of three molecules of PCNA. The T4 bacteriophage also uses a sliding clamp, called gp45 that is a trimer similar in structure to PCNA but lacks sequence homology to either PCNA or the bacterial beta clamp.[3]

More information Taxon, Sliding clamp protein ...
TaxonSliding clamp proteinMultimer stateAssociated polymerase
Bacteriabeta subunit of pol IIIdimerDNA polymerase III
Archaeaarchaeal PCNAtrimerPolD
EukaryotePCNAtrimerDNA polymerase delta
CaudoviralesIPR004190trimerPhage polymerase (e.g. T4)
Herpesviridaenon-clamp processivity factormonomerVirus-encoded polymerase
Close

Bacterial

Quick Facts Identifiers, Organism ...
DNA polymerase III subunit beta
Thumb
Crystallographic structure of the dimeric DNA polymerase beta subunit from E. coli.[6]
Identifiers
OrganismEscherichia coli
SymboldnaN
Entrez948218
PDB1MMI
RefSeq (Prot)NP_418156
UniProtP0A988
Other data
EC number2.7.7.7
ChromosomeMG1655: 3.88 - 3.88 Mb
Search for
StructuresSwiss-model
DomainsInterPro
Close

The beta clamp is a specific DNA clamp and a subunit of the DNA polymerase III holoenzyme found in bacteria. Two beta subunits are assembled around the DNA by the gamma subunit and ATP hydrolysis; this assembly is called the pre-initiation complex. After assembly around the DNA, the beta subunits' affinity for the gamma subunit is replaced by an affinity for the alpha and epsilon subunits, which together create the complete holoenzyme.[7][8][9] DNA polymerase III is the primary enzyme complex involved in prokaryotic DNA replication.

The gamma complex of DNA polymerase III, composed of γδδ'χψ subunits, catalyzes ATP to chaperone two beta subunits to bind to DNA. Once bound to DNA, the beta subunits can freely slide along double stranded DNA. The beta subunits in turn bind the αε polymerase complex. The α subunit possesses DNA polymerase activity and the ε subunit is a 3’-5’ exonuclease.[9]

The beta chain of bacterial DNA polymerase III is composed of three topologically equivalent domains (N-terminal, central, and C-terminal). Two beta chain molecules are tightly associated to form a closed ring encircling duplex DNA.

More information Identifiers, Symbol ...
DNA polymerase III, beta chain (whole protein)
Identifiers
SymbolDNA_polIII_beta
InterProIPR001001
SMARTSM00480
SCOP22pol / SCOPe / SUPFAM
Available protein structures:
Pfam   
PDB1jqj, 1jql, 1mmi, 1ok7, 1unn, 1vpk, 2pol, 3bep, 3d1e, 3d1f, 3d1g
Close
More information DNA polymerase III, beta chain, N-terminal, Identifiers ...
DNA polymerase III, beta chain,
N-terminal
Identifiers
SymbolDNA_pol3_beta
PfamPF00712
InterProIPR022634
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
DNA polymerase III, beta chain,
central
Identifiers
SymbolDNA_pol3_beta_2
PfamPF02767
InterProIPR022637
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
DNA polymerase III, beta chain,
C-terminal
Identifiers
SymbolDNA_pol3_beta_3
PfamPF02768
InterProIPR022635
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Close

As a drug target

Certain NSAIDs (carprofen, bromfenac, and vedaprofen) exhibit some suppression of bacterial DNA replication by inhibiting bacterial DNA clamp.[10]

Eukaryotic and archaeal

Quick Facts proliferating cell nuclear antigen, Identifiers ...
Close

The sliding clamp in eukaryotes is assembled from a specific subunit of DNA polymerase delta called the proliferating cell nuclear antigen (PCNA). The N-terminal and C-terminal domains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA.

The sequence of PCNA is well conserved between plants, animals and fungi, indicating a strong selective pressure for structure conservation, and suggesting that this type of DNA replication mechanism is conserved throughout eukaryotes.[12][13] In eukaryotes, a homologous, heterotrimeric "9-1-1 clamp" made up of RAD9-RAD1-HUS1 (911) is responsible for DNA damage checkpoint control.[14] This 9-1-1 clamp mounts onto DNA in the opposite direction.[15]

Archaea, probable evolutionary precursor of eukaryotes, also universally have at least one PCNA gene. This PCNA ring works with PolD, the single eukaryotic-like DNA polymerase in archaea responsible for multiple functions from replication to repair. Some unusual species have two or even three PCNA genes, forming heterotrimers or distinct specialized homotrimers.[16] Archaeons also share with eukaryotes the PIP (PCNA-interacting protein) motif, but a wider variety of such proteins performing different functions are found.[17]

PCNA is also appropriated by some viruses. The giant virus genus Chlorovirus, with PBCV-1 as a representative, carries in its genome two PCNA genes (Q84513, O41056) and a eukaryotic-type DNA polymerase.[18] Members of Baculoviridae also encode a PCNA homolog (P11038).[19]

More information Proliferating cell nuclear antigen, N-terminal domain, Identifiers ...
Proliferating cell nuclear antigen, N-terminal domain
Identifiers
SymbolPCNA_N
PfamPF00705
InterProIPR000730
PROSITEPDOC00265
SCOP21plq / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1axcC:1–125 1ge8A:3–92 1isqA:3–92 1iz4A:3–92 1iz5A:3–92 1plq :1–125 1plr :1–125 1rwzA:1–114 1rxmA:1–114 1rxzA:1–114 1u76C:1–125 1u7bA:1–125 1ud9C:11–100 1ul1A:1–125 1vyjG:1–125 1vymC:1–125 1w60B:1–125
Proliferating cell nuclear antigen, C-terminal domain
Identifiers
SymbolPCNA_C
PfamPF02747
InterProIPR000730
PROSITEPDOC00265
SCOP21plq / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1axcC:127–254 1ge8A:203–246 1isqA:203–246 1iz4A:203–246 1iz5A:203–246 1plq :127–254 1plr :127–254 1rwzA:121–241 1rxmA:121–241 1rxzA:121–241 1u76C:127–254 1u7bA:127–254 1ud9C:200–243 1ul1A:127–254 1vyjG:127–254 1vymC:127–254 1w60B:127–254
Close

Caudoviral

Quick Facts Identifiers, Organism ...
DNA polymerase accessory protein 45
Thumb
Identifiers
OrganismEnterobacteria phage T4
Symbolgp45
Entrez1258821
PDB1CZD
RefSeq (Prot)NP_049666
UniProtP04525
Other data
EC number2.7.7.7
Chromosome1: 0.03 - 0.03 Mb
Search for
StructuresSwiss-model
DomainsInterPro
Close

The viral gp45 sliding clamp subunit protein contains two domains. Each domain consists of two alpha helices and two beta sheets – the fold is duplicated and has internal pseudo two-fold symmetry.[21] Three gp45 molecules are tightly associated to form a closed ring encircling duplex DNA.

More information Gp45 sliding clamp, N-terminal, Identifiers ...
Gp45 sliding clamp, N-terminal
Identifiers
SymbolDNA_pol_proc_fac
PfamPF02916
InterProIPR004190
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1b77 1b8h 1czd
Gp45 sliding clamp, C-terminal
Identifiers
SymbolGp45_slide_clamp_C
PfamPF09116
InterProIPR015200
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1b77 1b8h 1czd
Close

Herpesviral

Some members of Herpesviridae encode a protein that has a DNA clamp fold but does not associate into a ring clamp. The two-domain protein does, however, associate with the viral DNA polymerase and also acts to increase processivity.[22] As it does not form a ring, it does not need a clamp loader to be attached to DNA.[23]

More information HSV UL42, Alphaherpesvirus), Identifiers ...
DNA polymerase processivity factor (HSV UL42, Alphaherpesvirus)
Identifiers
SymbolHerpes_UL42
PfamPF02282
InterProIPR003202
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Herpesvirus polymerase accessory protein (Betaherpesvirus)
Identifiers
SymbolHerpes_PAP
PfamPF03325
InterProIPR004997
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Herpes DNA replication accessory factor (Gammaherpesvirus)
Identifiers
SymbolHerpes_DNAp_acc
PfamPF04929
InterProIPR007013
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Close

Assembly

Sliding clamps are loaded onto their associated DNA template strands by specialized proteins known as "sliding clamp loaders", which also disassemble the clamps after replication has completed. The binding sites for these initiator proteins overlap with the binding sites for the DNA polymerase, so the clamp cannot simultaneously associate with a clamp loader and with a polymerase. Thus the clamp will not be actively disassembled while the polymerase remains bound. DNA clamps also associate with other factors involved in DNA and genome homeostasis, such as nucleosome assembly factors, Okazaki fragment ligases, and DNA repair proteins. All of these proteins also share a binding site on the DNA clamp that overlaps with the clamp loader site, ensuring that the clamp will not be removed while any enzyme is still working on the DNA. The activity of the clamp loader requires ATP hydrolysis to "close" the clamp around the DNA.

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.