Loading AI tools
Chemical compound From Wikipedia, the free encyclopedia
Cyanuric chloride is an organic compound with the formula (NCCl)3. This white solid is the chlorinated derivative of 1,3,5-triazine. It is the trimer of cyanogen chloride.[1] Cyanuric chloride is the main precursor to the popular but controversial herbicide atrazine.
Names | |
---|---|
IUPAC name
2,4,6-Trichloro-1,3,5-triazine | |
Other names
Trichlorotriazine s-Triazine trichloride Cyanuryl chloride TCT | |
Identifiers | |
3D model (JSmol) |
|
124246 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.003.287 |
EC Number |
|
PubChem CID |
|
RTECS number |
|
UNII | |
UN number | 2670 |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C3Cl3N3 | |
Molar mass | 184.40 g·mol−1 |
Appearance | White powder |
Odor | pungent |
Density | 1.32 g/cm3 |
Melting point | 144–148 °C (291–298 °F; 417–421 K) |
Boiling point | 192 °C (378 °F; 465 K) |
hydrolyzes | |
Solubility in organic solvents | soluble |
Solubility in THF | 0.34 g/mL |
Solubility in CHCl3 | 0.17 g/mL |
Structure | |
monoclinic | |
Hazards | |
GHS labelling: | |
Danger | |
H302, H314, H317, H330 | |
P260, P261, P264, P270, P271, P272, P280, P284, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P330, P333+P313, P363, P403+P233, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | Non-flammable |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
485 mg/kg (rat, oral) |
Safety data sheet (SDS) | ICSC 1231 |
Related compounds | |
Related triazines |
Cyanuric acid Cyanuric fluoride Cyanuric bromide Trichloroisocyanuric acid |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Cyanuric chloride is prepared in two steps from hydrogen cyanide via the intermediacy of cyanogen chloride, which is trimerized at elevated temperatures over a carbon catalyst:
In 2005, approximately 200,000 tons were produced.[2]
It is estimated that 70% of cyanuric chloride is used in the preparation of the triazine-class pesticides, especially atrazine. Such reactions rely on the easy displacement of the chloride with nucleophiles such as amines:
Other triazine herbicides, such as simazine, anilazine and cyromazine are made in an analogous way.[3]
Cyanuric chloride is also used as a precursor to dyes and crosslinking agents. The largest class of these dyes are the sulfonated triazine-stilbene optical brighteners (OBA) or fluorescent whitening agents (FWA) commonly found in detergent formulas and white paper.[2] Many reactive dyes also incorporate a triazine ring. They are also manufactured by way of the chloride displacement reaction shown above.[3][4]
The chloride centers are easily replaced. Amines give melamine derivatives, for example in the synthesis of dendrimers:[5][6]
It reacts with hydrosulfide to give thiocyanuric acid ((S=CNH)3).[7]
Cyanuric chloride is employed as a reagent in organic synthesis for the conversion of alcohols into alkyl chlorides,[8] and carboxylic acids into acyl chlorides:[9]
It is also used as a dehydrating agent, e.g. in the conversion of amides to nitriles,[10] and for the activation of carboxylic acids for reduction to alcohols. Heating with DMF gives "Gold's reagent" Me2NCH=NCH=NMe2+Cl−, which is a versatile source of aminoalkylations and a precursor to heterocycles.[11][12]
Cyanuric chloride can also be used as an alternative to oxalyl chloride in the Swern oxidation.[13]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.