Covering number
From Wikipedia, the free encyclopedia
From Wikipedia, the free encyclopedia
In mathematics, a covering number is the number of balls of a given size needed to completely cover a given space, with possible overlaps between the balls. The covering number quantifies the size of a set and can be applied to general metric spaces. Two related concepts are the packing number, the number of disjoint balls that fit in a space, and the metric entropy, the number of points that fit in a space when constrained to lie at some fixed minimum distance apart.
Let (M, d) be a metric space, let K be a subset of M, and let r be a positive real number. Let Br(x) denote the ball of radius r centered at x. A subset C of M is an r-external covering of K if:
In other words, for every there exists such that .
If furthermore C is a subset of K, then it is an r-internal covering.
The external covering number of K, denoted , is the minimum cardinality of any external covering of K. The internal covering number, denoted , is the minimum cardinality of any internal covering.
A subset P of K is a packing if and the set is pairwise disjoint. The packing number of K, denoted , is the maximum cardinality of any packing of K.
A subset S of K is r-separated if each pair of points x and y in S satisfies d(x, y) ≥ r. The metric entropy of K, denoted , is the maximum cardinality of any r-separated subset of K.
The following properties relate to covering numbers in the standard Euclidean space, :[1]: 338
Let be a space of real-valued functions, with the l-infinity metric (see example 3 above). Suppose all functions in are bounded by a real constant . Then, the covering number can be used to bound the generalization error of learning functions from , relative to the squared loss:[2]: 61
where and is the number of samples.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.