Loading AI tools
From Wikipedia, the free encyclopedia
Combinatorial physics or physical combinatorics is the area of interaction between physics and combinatorics.
Combinatorics has always played an important role in quantum field theory and statistical physics.[3] However, combinatorial physics only emerged as a specific field after a seminal work by Alain Connes and Dirk Kreimer,[4] showing that the renormalization of Feynman diagrams can be described by a Hopf algebra.
Combinatorial physics can be characterized by the use of algebraic concepts to interpret and solve physical problems involving combinatorics. It gives rise to a particularly harmonious collaboration between mathematicians and physicists.
Among the significant physical results of combinatorial physics, we may mention the reinterpretation of renormalization as a Riemann–Hilbert problem,[5] the fact that the Slavnov–Taylor identities of gauge theories generate a Hopf ideal,[6] the quantization of fields[7] and strings,[8] and a completely algebraic description of the combinatorics of quantum field theory.[9] An important example of applying combinatorics to physics is the enumeration of alternating sign matrix in the solution of ice-type models. The corresponding ice-type model is the six vertex model with domain wall boundary conditions.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.