Loading AI tools
Type of graph From Wikipedia, the free encyclopedia
In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.
The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected.
This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection).
The use of biconnected graphs is very important in the field of networking (see Network flow), because of this property of redundancy.
A biconnected undirected graph is a connected graph that is not broken into disconnected pieces by deleting any single vertex (and its incident edges).
A biconnected directed graph is one such that for any two vertices v and w there are two directed paths from v to w which have no vertices in common other than v and w.
Vertices | Number of Possibilities |
---|---|
1 | 0 |
2 | 1 |
3 | 1 |
4 | 3 |
5 | 10 |
6 | 56 |
7 | 468 |
8 | 7123 |
9 | 194066 |
10 | 9743542 |
11 | 900969091 |
12 | 153620333545 |
13 | 48432939150704 |
14 | 28361824488394169 |
15 | 30995890806033380784 |
16 | 63501635429109597504951 |
17 | 244852079292073376010411280 |
18 | 1783160594069429925952824734641 |
19 | 24603887051350945867492816663958981 |
Every 2-connected graph can be constructed inductively by adding paths to a cycle (Diestel 2016, p. 59).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.