Remove ads
Swiss researcher and academic From Wikipedia, the free encyclopedia
Benedikt Kessler is a Swiss researcher and academic. He is Professor of Biochemistry and Mass Spectrometry at the Target Discovery Institute, University of Oxford.[1]
Benedikt Kessler | |
---|---|
Academic background | |
Education | B.A., Biochemistry Ph.D., Immunology |
Alma mater | Swiss Federal Institute of Technology Ludwig Institute for Cancer Research |
Academic work | |
Institutions | University of Oxford |
Kessler's research has been focused on ubiquitin and protease biology. Some of his work has dealt with defining the molecular signatures in human disease processes and accelerating target discovery in translational research.[2][3] He holds two patents.[4][5]
Kessler is a member of the British Mass Spectrometry Society, the British Society of Cell Biology and the American Association for Cancer Research.[6]
Kessler received a B.A. in Biochemistry from Swiss Federal Institute of Technology in 1992. He then joined Ludwig Institute for Cancer Research where he received his Ph.D. in Immunology. He completed his post-doctoral training at Harvard Medical School in the laboratory of Hidde Ploegh where he studied the role of proteolysis in antigen processing and presentation.[7][8]
In 2001, Kessler joined the Harvard Medical School as an Instructor in Pathology. He left Harvard in 2004 and moved to the United Kingdom, where he joined the University of Oxford as a Research Group Leader.[8] Later he started teaching at the University of Oxford, becoming a Full Professor of Biochemistry & Life Science Mass Spectrometry in 2014.[1]
Kessler was part of the DUB Alliance, a group that is working to develop novel drugs against deubiquitylating enzymes (DUBs). He is currently a member of the Innovative Technology Enabling Network (ITEN), a scientific consortium that explores DUBs as cancer targets coordinated by Pfizer.[9]
Kessler has been studying major histocompatibility complex (MHC) class I antigens using HPLC-based analysis since 1993 and mass spectrometry-based approaches to study the ubiquitin-proteasome pathway since 2000. In 2005, he established his own group at the University of Oxford, Nuffield Department of Medicine (NDM), with a focus on ubiquitin and protease biology, biological mass spectrometry and proteomics. Kessler relocated his laboratory to the Target Discovery Institute (TDI) in 2013.
Kessler has made contributions to explain the action of novel clinical drugs (Velcade, Carfilzomib, Kyprolis) for the treatment of Multiple Myeloma patients,[10] and to the discovery of potentially clinically exploitable cancer targets within the ubiquitin system, in particular deubiquitylating enzymes (DUBs).[11][12] The Kessler group also helped to uncover molecular signatures associated with a panel of human diseases via clinical proteomics studies.[13][14]
The Kessler Lab is currently developing chemoproteomics methods to profile active ubiquitin processing enzymes, in particular deubiquitylating enzymes (DUBs) and the dynamic ubiquitome.[15] Ubiquitin-based active site directed probes were developed that allowed the profiling of the active cellular content of the DUB enzyme family.[16] This approach was also used to demonstrate the involvement of otubain 1 (OTUB1) in infection[17] and prostate cancer,[18] the role of USP4[19] and USP47[20] in DNA repair mechanisms and USP18[21] in immuno-oncology.[22][23] In particular, Kessler's work contributed to the characterisation of small molecule DUB inhibitors as novel potential therapeutic agents against USP30[24][25] in Parkinson's disease, USP28[26] in squamous lung carcinoma and USP7[27] in multiple myeloma.[12][28]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.