Astronomical event From Wikipedia, the free encyclopedia
A partial lunar eclipse will occur at the Moon’s descending node of orbit on Sunday, April 5, 2099,[1] with an umbral magnitude of 0.1680. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 1.4 days after perigee (on April 3, 2099, at 23:30 UTC), the Moon's apparent diameter will be larger.[2]
Partial eclipse | |||||||||||||
Date | April 5, 2099 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gamma | −0.9304 | ||||||||||||
Magnitude | 0.1680 | ||||||||||||
Saros cycle | 143 (23 of 73) | ||||||||||||
Partiality | 88 minutes, 4 seconds | ||||||||||||
Penumbral | 257 minutes, 43 seconds | ||||||||||||
| |||||||||||||
The eclipse will be completely visible over North America, western South America, and the central and eastern Pacific Ocean, seen rising over northeast Asia and Australia and setting over eastern South America.[3]
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 1.13534 |
Umbral Magnitude | 0.16996 |
Gamma | −0.93038 |
Sun Right Ascension | 00h58m32.6s |
Sun Declination | +06°14'54.6" |
Sun Semi-Diameter | 15'59.6" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 12h56m44.9s |
Moon Declination | -07°04'45.1" |
Moon Semi-Diameter | 16'34.0" |
Moon Equatorial Horizontal Parallax | 1°00'48.0" |
ΔT | 126.2 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 21 Ascending node (new moon) | April 5 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 131 | Partial lunar eclipse Lunar Saros 143 |
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on June 6, 2096 and November 29, 2096 occur in the previous lunar year eclipse set.
Lunar eclipse series sets from 2096 to 2099 | ||||||||
---|---|---|---|---|---|---|---|---|
Descending node | Ascending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
113 | 2096 May 07 |
Penumbral |
1.2896 | 118 | 2096 Oct 31 |
Penumbral |
−1.1307 | |
123 | 2097 Apr 26 |
Partial |
0.5377 | 128 | 2097 Oct 21 |
Total |
−0.4608 | |
133 | 2098 Apr 15 |
Total |
−0.2272 | 138 | 2098 Oct 10 |
Total |
0.2749 | |
143 | 2099 Apr 05 |
Partial |
−0.9304 | 148 | 2099 Sep 29 |
Penumbral |
1.0174 |
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 18, 1720. It contains partial eclipses from March 14, 2063 through June 21, 2225; total eclipses from July 2, 2243 through April 13, 2712; and a second set of partial eclipses from April 25, 2730 through July 9, 2856. The series ends at member 72 as a penumbral eclipse on October 5, 3000.
The longest duration of totality will be produced by member 36 at 99 minutes, 9 seconds on September 6, 2351. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series will occur on 2351 Sep 06, lasting 99 minutes, 9 seconds.[7] | Penumbral | Partial | Total | Central |
1720 Aug 18 |
2063 Mar 14 |
2243 Jul 02 |
2297 Aug 03 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2495 Dec 02 |
2712 Apr 13 |
2856 Jul 09 |
3000 Oct 05 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 6–27 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
6 | 7 | 8 | |||
1810 Oct 12 | 1828 Oct 23 | 1846 Nov 03 | |||
9 | 10 | 11 | |||
1864 Nov 13 | 1882 Nov 25 | 1900 Dec 06 | |||
12 | 13 | 14 | |||
1918 Dec 17 | 1936 Dec 28 | 1955 Jan 08 | |||
15 | 16 | 17 | |||
1973 Jan 18 | 1991 Jan 30 | 2009 Feb 09 | |||
18 | 19 | 20 | |||
2027 Feb 20 | 2045 Mar 03 | 2063 Mar 14 | |||
21 | 22 | 23 | |||
2081 Mar 25 | 2099 Apr 05 | 2117 Apr 16 | |||
24 | 25 | 26 | |||
2135 Apr 28 | 2153 May 08 | 2171 May 19 | |||
27 | |||||
2189 May 29 | |||||
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | |||||||||
---|---|---|---|---|---|---|---|---|---|
1804 Jul 22 (Saros 116) |
1815 Jun 21 (Saros 117) |
1826 May 21 (Saros 118) |
1837 Apr 20 (Saros 119) |
1848 Mar 19 (Saros 120) | |||||
1859 Feb 17 (Saros 121) |
1870 Jan 17 (Saros 122) |
1880 Dec 16 (Saros 123) |
1891 Nov 16 (Saros 124) |
1902 Oct 17 (Saros 125) | |||||
1913 Sep 15 (Saros 126) |
1924 Aug 14 (Saros 127) |
1935 Jul 16 (Saros 128) |
1946 Jun 14 (Saros 129) |
1957 May 13 (Saros 130) | |||||
1968 Apr 13 (Saros 131) |
1979 Mar 13 (Saros 132) |
1990 Feb 09 (Saros 133) |
2001 Jan 09 (Saros 134) |
2011 Dec 10 (Saros 135) | |||||
2022 Nov 08 (Saros 136) |
2033 Oct 08 (Saros 137) |
2044 Sep 07 (Saros 138) |
2055 Aug 07 (Saros 139) |
2066 Jul 07 (Saros 140) | |||||
2077 Jun 06 (Saros 141) |
2088 May 05 (Saros 142) |
2099 Apr 05 (Saros 143) |
2110 Mar 06 (Saros 144) |
2121 Feb 02 (Saros 145) | |||||
2132 Jan 02 (Saros 146) |
2142 Dec 03 (Saros 147) |
2153 Nov 01 (Saros 148) |
2164 Sep 30 (Saros 149) |
2175 Aug 31 (Saros 150) | |||||
2186 Jul 31 (Saros 151) |
2197 Jun 29 (Saros 152) | ||||||||
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 150.
Seamless Wikipedia browsing. On steroids.