Addition and recurrence relations
The Angelescu polynomials satisfy the following addition theorem:
where
is a generalized Laguerre polynomial.
A particularly notable special case of this is when
, in which case the formula simplifies to
[clarification needed]
The polynomials also satisfy the recurrence relation
[verification needed]
which simplifies when
to
. This can be generalized to the following:
[verification needed]
a special case of which is the formula
.
Integrals
The Angelescu polynomials satisfy the following integral formulae:
![{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {e^{-x/2}}{x}}[\pi _{n}(x)-\pi _{n}(0)]dx&=\sum _{r=0}^{n-1}(-1)^{n-r+1}{\frac {n!}{r!}}\pi _{r}(0)\int _{0}^{\infty }[{\frac {1}{1/2+p}}-1]^{n-r-1}d[{\frac {1}{1/2+p}}]\\&=\sum _{r=0}^{n-1}(-1)^{n-r+1}{\frac {n!}{r!}}{\frac {\pi _{r}(0)}{n-r}}[1+(-1)^{n-r-1}]\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/ece5bd9062231514f288b13ae1904ac13ccffaa9)
![{\displaystyle \int _{0}^{\infty }e^{-x}[\pi _{n}(x)-\pi _{n}(0)]L_{m}^{(1)}(x)dx={\begin{cases}0{\text{ if }}m\geq n\\{\frac {n!}{(n-m-1)!}}\pi _{n-m-1}(0){\text{ if }}0\leq m\leq n-1\end{cases}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/3d1270ea2b7598cb5e8962e8c96ddf75c0bc3785)
(Here,
is a Laguerre polynomial.)