An adaptive system is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological homeostasis or evolutionary adaptation in biology. Feedback loops represent a key feature of adaptive systems, such as ecosystems and individual organisms; or in the human world, communities, organizations, and families. Adaptive systems can be organized into a hierarchy.
This article needs additional citations for verification. (November 2008) |
Artificial adaptive systems include robots with control systems that utilize negative feedback to maintain desired states.
The law of adaptation
The law of adaptation may be stated informally as:
Every adaptive system converges to a state in which all kind of stimulation ceases.[1]
Formally, the law can be defined as follows:
Given a system , we say that a physical event is a stimulus for the system if and only if the probability that the system suffers a change or be perturbed (in its elements or in its processes) when the event occurs is strictly greater than the prior probability that suffers a change independently of :
Let be an arbitrary system subject to changes in time and let be an arbitrary event that is a stimulus for the system : we say that is an adaptive system if and only if when t tends to infinity the probability that the system change its behavior in a time step given the event is equal to the probability that the system change its behavior independently of the occurrence of the event . In mathematical terms:
- -
- -
Thus, for each instant will exist a temporal interval such that:
Benefit of self-adjusting systems
In an adaptive system, a parameter changes slowly and has no preferred value. In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”. One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos. Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster. A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.[2] Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.[3]
See also
Notes
References
External links
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.