Loading AI tools
Protein-coding gene in the species Homo sapiens From Wikipedia, the free encyclopedia
Aldo-keto reductase family 1 member C2, also known as bile acid binding protein, 3α-hydroxysteroid dehydrogenase type 3 (3α-HSD3),[5][6] and dihydrodiol dehydrogenase type 2, is an enzyme that in humans is encoded by the AKR1C2 gene.[7]
This gene encodes a member of the aldo/keto reductase superfamily, which consists of more than 40 known enzymes and proteins. These enzymes catalyze the conversion of aldehydes and ketones to their corresponding alcohols using NADH and/or NADPH as cofactors. The enzymes display overlapping but distinct substrate specificity. This particular enzyme, AKR1C2, binds bile acid with high affinity, and shows minimal 3α-hydroxysteroid dehydrogenase activity. The AKR1C2 gene shares high sequence identity with three other gene members and is clustered with those three genes at chromosome 10p15-p14. Three transcript variants encoding two different isoforms have been found for this gene.[7] The AKR1C2 enzyme catalyzes reactions at specific positions on the steroid nucleus. Specifically, AKR enzymes, including AKR1C2, act as 3α/β-HSDs, 17β-HSDs, and 20α-HSDs, catalyzing NAD(P)(H)-dependent oxidoreduction of substituents at the C3, C17, and C20 positions of the steroid nucleus.[8][9][10]
AKR1C2 binds bile acid with high affinity catalyzing aldo-keto reduction reaction.[7]
Aldo-keto reductases, including AKR1C2, are NAD(P)H-linked oxidoreductases that primarily catalyze the reduction of aldehydes and ketones to primary and secondary alcohols. This reduction is dependent on NADPH.[11][12]
In the context of bile acids, the AKR1C2 enzyme would bind to the bile acid (a type of steroid molecule) and catalyze the reduction of a carbonyl group (C=O) present in the bile acid to a hydroxy group (-OH), using NADPH as a cofactor.[11][12] This reaction is part of the broader metabolic processes that these enzymes are involved in, which include biosynthesis, intermediary metabolism, and detoxification.[11][12]
The AKR1C2 enzyme is also known as 3α-hydroxysteroid dehydrogenase type 3 (3α-HSD3), meaning that the enzyme possesses 3α-hydroxysteroid dehydrogenase activity, i.e. it can hydroxylate steroids at a carbon position 3α of the steroid nucleus, attaching the hydroxy group (-OH) to carbon 3 in α stereiodirection. 3α-hydroxysteroid dehydrogenases, including AKR1C2, are NAD(P)H-linked oxidoreductases that primarily catalyze the oxidation of 3α-hydroxysteroids to their corresponding 3-ketosteroids. This oxidation is dependent on NAD+. The substrates for the 3α-HSD3 enzyme are steroids such as androgens, estrogens, and progestins, which regulate various sex functions. For example, 3α-HSD3 can catalyze the conversion of the potent androgen 5α-dihydrotestosterone (DHT) into its much less active form, 5α-androstan-3α,17β-diol (3α-diol), effectively deactivating biological action of DHT.[13][14][15][16]
HGNC Gene Symbol | Enzyme Name Aliases[17] |
---|---|
AKR1C1 | aldo-keto reductase family 1 member C1; 20α-hydroxysteroid dehydrogenase |
AKR1C2 | aldo-keto reductase family 1 member C2; 3α-hydroxysteroid dehydrogenase type 3 |
AKR1C3 | aldo-keto reductase family 1 member C3; 3α-hydroxysteroid dehydrogenase type 2; 17β-hydroxysteroid dehydrogenase type 5; HSD17B5 |
AKR1C4 | aldo-keto reductase family 1 member C4; 3α-hydroxysteroid dehydrogenase type 1 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.