(668643) 2012 DR30
Trans-Neptunian object and centaur From Wikipedia, the free encyclopedia
Trans-Neptunian object and centaur From Wikipedia, the free encyclopedia
(668643) 2012 DR30 is a trans-Neptunian object and centaur from the scattered disk and/or inner Oort cloud, located in the outermost region of the Solar System. The object with a highly eccentric orbit of 0.99 was first observed by astronomers with the Spacewatch program at Steward Observatory on 31 March 2009.[2] It measures approximately 188 kilometers (120 miles) in diameter.
Discovery[1][2][3] | |
---|---|
Discovered by | Spacewatch |
Discovery site | Kitt Peak Obs. |
Discovery date | 31 March 2009 (first observed only) |
Designations | |
2012 DR30 | |
| |
Orbital characteristics[1][a] | |
Epoch 27 April 2019 (JD 2458600.5) | |
Uncertainty parameter 1 | |
Observation arc | 14.72 yr (5,375 d) |
Aphelion | 3192 AU 2049 AU (barycentric) |
Perihelion | 14.5 AU |
1603.44 AU 1032 AU (barycentric) | |
Eccentricity | 0.9909 |
64207 yr 33100 yr (barycentric) | |
0.0453° | |
0° 0m 0s / day | |
Inclination | 77.986° |
341.48° | |
≈ 16 March 2011[7] | |
195.57° | |
Jupiter MOID | 9.311 AU |
Saturn MOID | 5.45 AU[2] |
Uranus MOID | 3.32 AU[2] |
TJupiter | 0.9860 |
Physical characteristics | |
19.9[8] | |
7.1[1][2] | |
Using an epoch of February 2017, it has the second-largest heliocentric semi-major axis of a minor planet not detected out-gassing like a comet.[9] (2014 FE72 has a larger heliocentric semi-major axis.) 2012 DR30 does have a barycentric semi-major axis of 1032 AU.[10][a] For the epoch of July 2018 2012 DR30 will have its largest heliocentric semi-major axis of 1644 AU.
2012 DR30 passed 5.7 AU from Saturn in February 2009 and came to perihelion in March 2011 at a distance of 14.5 AU from the Sun (inside the orbit of Uranus).[1] In 2018, it will move from 18.2 AU to 19.1 AU from the Sun.[8] It comes to opposition in late March. With an absolute magnitude (H) of 7.1,[2] the object has a published diameter of 185 and 188 kilometers, respectively.[5][6]
With an observation arc of 14.7 years,[1] it has a well constrained orbit. It will not be 50 AU from the Sun until 2047. After leaving the planetary region of the Solar System, 2012 DR30 will have a barycentric aphelion of 2049 AU with an orbital period of 33100 years.[a] In a 10 million year integration of the orbit, the nominal (best-fit) orbit and both 3-sigma clones remain outside 12.2 AU (qmin) from the Sun.[4] Summary of barycentric orbital parameters are:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.