Coordination complexes with one or more phosphate ligands From Wikipedia, the free encyclopedia
Transition metal phosphate complexes are coordination complexes with one or more phosphate ligands. Phosphate binds to metals through one, two, three, or all four oxygen atoms. The bidentate coordination mode is common. The second and third pKa's of phosphoric acid, pKa2 and pKa3, are 7.2 and 12.37, respectively. It follows that HPO2−4 and PO3−4 are sufficiently basic to serve as ligands. The examples below confirm this expectation. Molecular metal phosphate complexes have no or few applications.
Aside from molecular metal phosphate complexes, the topic of this article, many or most transition metal phosphates are nonmolecular, being coordination polymers or dense ternary or quaternary phases. Iron(III) phosphate, contemplated as a cathode material for batteries, is one example. Vanadyl phosphate (VOPO4(H2O)) is a commercial catalyst for oxidation reactions. Many metal phosphates occur as minerals.
Phosphates exist in many condensed oligomeric forms. Many of these derivatives function as ligands for metal ions. Pyrophosphate (P2O4−7)[7] and trimetaphosphate ([P3O9]3−) have been particularly studied. They typically function as bi- and tridentate ligands.
Seamless Wikipedia browsing. On steroids.