Loading AI tools
Statistical sampling techniques From Wikipedia, the free encyclopedia
Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Oversampling and undersampling are opposite and roughly equivalent techniques. There are also more complex oversampling techniques, including the creation of artificial data points with algorithms like Synthetic minority oversampling technique.[1][2]
Both oversampling and undersampling involve introducing a bias to select more samples from one class than from another, to compensate for an imbalance that is either already present in the data, or likely to develop if a purely random sample were taken. Data Imbalance can be of the following types:
Oversampling is generally employed more frequently than undersampling, especially when the detailed data has yet to be collected by survey, interview or otherwise. Undersampling is employed much less frequently. Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically involves a significant human component, and is typically specific to the dataset and the analytical problem, and therefore takes time and money. For example:
For these reasons, one will typically cleanse only as much data as is needed to answer a question with reasonable statistical confidence (see Sample Size), but not more than that.
Random Oversampling involves supplementing the training data with multiple copies of some of the minority classes. Oversampling can be done more than once (2x, 3x, 5x, 10x, etc.) This is one of the earliest proposed methods, that is also proven to be robust.[3] Instead of duplicating every sample in the minority class, some of them may be randomly chosen with replacement.
There are a number of methods available to oversample a dataset used in a typical classification problem (using a classification algorithm to classify a set of images, given a labelled training set of images). The most common technique is known as SMOTE: Synthetic Minority Over-sampling Technique.[4] However, this technique has been shown to yield poorly calibrated models, with an overestimated probability to belong to the minority class.[5]
To illustrate how this technique works consider some training data which has s samples, and f features in the feature space of the data. Note that these features, for simplicity, are continuous. As an example, consider a dataset of birds for classification. The feature space for the minority class for which we want to oversample could be beak length, wingspan, and weight (all continuous). To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space). To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point.
Many modifications and extensions have been made to the SMOTE method ever since its proposal.[6]
The adaptive synthetic sampling approach, or ADASYN algorithm,[7] builds on the methodology of SMOTE, by shifting the importance of the classification boundary to those minority classes which are difficult. ADASYN uses a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data is generated for minority class examples that are harder to learn.
Data augmentation in data analysis are techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data. It acts as a regularizer and helps reduce overfitting when training a machine learning model.[8] (See: Data augmentation)
Randomly remove samples from the majority class, with or without replacement. This is one of the earliest techniques used to alleviate imbalance in the dataset, however, it may increase the variance of the classifier and is very likely to discard useful or important samples.[6]
Cluster centroids is a method that replaces cluster of samples by the cluster centroid of a K-means algorithm, where the number of clusters is set by the level of undersampling.
Tomek links remove unwanted overlap between classes where majority class links are removed until all minimally distanced nearest neighbor pairs are of the same class. A Tomek link is defined as follows: given an instance pair , where and is the distance between and , then the pair is called a Tomek link if there's no instance such that or . In this way, if two instances form a Tomek link then either one of these instances is noise or both are near a border. Thus, one can use Tomek links to clean up overlap between classes. By removing overlapping examples, one can establish well-defined clusters in the training set and lead to improved classification performance.
Undersampling with ensemble learning
A recent study shows that the combination of Undersampling with ensemble learning can achieve better results, see IFME: information filtering by multiple examples with under-sampling in a digital library environment.[9]
Although sampling techniques have been developed mostly for classification tasks, growing attention is being paid to the problem of imbalanced regression.[10] Adaptations of popular strategies are available, including undersampling, oversampling and SMOTE.[11][12] Sampling techniques have also been explored in the context of numerical prediction in dependency-oriented data, such as time series forecasting[13] and spatio-temporal forecasting.[14]
It's possible to combine oversampling and undersampling techniques into a hybrid strategy. Common examples include SMOTE and Tomek links or SMOTE and Edited Nearest Neighbors (ENN). Additional ways of learning on imbalanced datasets include weighing training instances, introducing different misclassification costs for positive and negative examples and bootstrapping.[15]
Poor models in [the binary classification] setting are often a result of—any combination of—fitting deterministic classifiers, using re-sampling or re-weighting methods to balance class frequencies in the training data and evaluating the model with a score such as accuracy. ... No re-sampling technique will magically generate more information out of the few cases with the rare class.
— Model Comparison and Calibration Assessment User Guide for Consistent Scoring Functions in Machine Learning and Actuarial Practice, Tobias Fissler, arXiv:2202.12780v3, Christian Lorentzen, Michael Mayer, 2023
Probabilistic machine learning models trying to model a conditional distribution (through Bayes rule) will be wrongly calibrated if modifying the natural distribution during training by applying undersampling or downsampling.[16]
This point can be illustrated with a simple example: Assume no predictive variables and where the proportion of is 0.01 and the proportion of is 0.99. Is a model which learns useless and should be modified via undersampling or oversampling? The answer is no. Class imbalance is not a problem in itself at all.
Additionally,
may be applied by practitioners in multi-class classification or situations with very imbalanced cost structure. This might be done in order to achieve "desireable", best performances for each class (potentially measured as precision and recall in each class). Finding the best multi-class classification performance or the best tradeoff between precision and recall is, however, inherently a multi-objective optimization problem. It is well known that these problems typically have multiple incomparable Pareto optimal solutions. Oversampling or undersampling as well as assigning weights to samples is an implicit way to find a certain pareto optimum (and it sacrifices the calibration of the estimated probabilities). A more explicit way than oversampling or downsampling could be to select a Pareto optimum by
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.