Loading AI tools
Constant derivative of the metric tensor From Wikipedia, the free encyclopedia
In mathematics, the nonmetricity tensor in differential geometry is the covariant derivative of the metric tensor.[1][2] It is therefore a tensor field of order three. It vanishes for the case of Riemannian geometry and can be used to study non-Riemannian spacetimes.[3]
By components, it is defined as follows.[1]
It measures the rate of change of the components of the metric tensor along the flow of a given vector field, since
where is the coordinate basis of vector fields of the tangent bundle, in the case of having a 4-dimensional manifold.
We say that a connection is compatible with the metric when its associated covariant derivative of the metric tensor (call it , for example) is zero, i.e.
If the connection is also torsion-free (i.e. totally symmetric) then it is known as the Levi-Civita connection, which is the only one without torsion and compatible with the metric tensor. If we see it from a geometrical point of view, a non-vanishing nonmetricity tensor for a metric tensor implies that the modulus of a vector defined on the tangent bundle to a certain point of the manifold, changes when it is evaluated along the direction (flow) of another arbitrary vector.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.