Loading AI tools
Measure of prediction accuracy of a forecast From Wikipedia, the free encyclopedia
The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula:
where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n.
Mean absolute percentage error is commonly used as a loss function for regression problems and in model evaluation, because of its very intuitive interpretation in terms of relative error.
Consider a standard regression setting in which the data are fully described by a random pair with values in , and n i.i.d. copies of . Regression models aim at finding a good model for the pair, that is a measurable function g from to such that is close to Y.
In the classical regression setting, the closeness of to Y is measured via the L2 risk, also called the mean squared error (MSE). In the MAPE regression context,[1] the closeness of to Y is measured via the MAPE, and the aim of MAPE regressions is to find a model such that:
where is the class of models considered (e.g. linear models).
In practice
In practice can be estimated by the empirical risk minimization strategy, leading to
From a practical point of view, the use of the MAPE as a quality function for regression model is equivalent to doing weighted mean absolute error (MAE) regression, also known as quantile regression. This property is trivial since
As a consequence, the use of the MAPE is very easy in practice, for example using existing libraries for quantile regression allowing weights.
The use of the MAPE as a loss function for regression analysis is feasible both on a practical point of view and on a theoretical one, since the existence of an optimal model and the consistency of the empirical risk minimization can be proved.[1]
WMAPE (sometimes spelled wMAPE) stands for weighted mean absolute percentage error.[2] It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume).[3] Effectively, this overcomes the 'infinite error' issue.[4] Its formula is:[4]
Where is the weight, is a vector of the actual data and is the forecast or prediction. However, this effectively simplifies to a much simpler formula:
Confusingly, sometimes when people refer to wMAPE they are talking about a different model in which the numerator and denominator of the wMAPE formula above are weighted again by another set of custom weights . Perhaps it would be more accurate to call this the double weighted MAPE (wwMAPE). Its formula is:
Although the concept of MAPE sounds very simple and convincing, it has major drawbacks in practical application,[5] and there are many studies on shortcomings and misleading results from MAPE.[6][7]
To overcome these issues with MAPE, there are some other measures proposed in literature:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.