Loading AI tools
From Wikipedia, the free encyclopedia
In mathematics, the Lions–Magenes lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a criterion for moving a time derivative of a function out of its action (as a functional) on the function itself.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2019) |
Let X0, X and X1 be three Hilbert spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is continuously embedded in X and that X is continuously embedded in X1, and that X1 is the dual space of X0. Denote the norm on X by || ⋅ ||X, and denote the action of X1 on X0 by . Suppose for some that is such that its time derivative . Then is almost everywhere equal to a function continuous from into , and moreover the following equality holds in the sense of scalar distributions on :
The above equality is meaningful, since the functions
are both integrable on .
It is important to note that this lemma does not extend to the case where is such that its time derivative for . For example, the energy equality for the 3-dimensional Navier–Stokes equations is not known to hold for weak solutions, since a weak solution is only known to satisfy and (where is a Sobolev space, and is its dual space, which is not enough to apply the Lions–Magnes lemma (one would need , but this is not known to be true for weak solutions). [1]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.