In mathematics , the Laguerre polynomials , named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation:
x
y
″
+
(
1
−
x
)
y
′
+
n
y
=
0
,
y
=
y
(
x
)
{\displaystyle xy''+(1-x)y'+ny=0,\ y=y(x)}
which is a second-order linear differential equation . This equation has nonsingular solutions only if n is a non-negative integer.
Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i
Sometimes the name Laguerre polynomials is used for solutions of
x
y
″
+
(
α
+
1
−
x
)
y
′
+
n
y
=
0
.
{\displaystyle xy''+(\alpha +1-x)y'+ny=0~.}
where n is still a non-negative integer.
Then they are also named generalized Laguerre polynomials , as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials , after their inventor[1] Nikolay Yakovlevich Sonin ).
More generally, a Laguerre function is a solution when n is not necessarily a non-negative integer.
The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form
∫
0
∞
f
(
x
)
e
−
x
d
x
.
{\displaystyle \int _{0}^{\infty }f(x)e^{-x}\,dx.}
These polynomials, usually denoted L 0 , L 1 , ..., are a polynomial sequence which may be defined by the Rodrigues formula ,
L
n
(
x
)
=
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
)
=
1
n
!
(
d
d
x
−
1
)
n
x
n
,
{\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right)={\frac {1}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n},}
reducing to the closed form of a following section.
They are orthogonal polynomials with respect to an inner product
⟨
f
,
g
⟩
=
∫
0
∞
f
(
x
)
g
(
x
)
e
−
x
d
x
.
{\displaystyle \langle f,g\rangle =\int _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}
The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see the Tricomi–Carlitz polynomials .
The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase space . They further enter in the quantum mechanics of the Morse potential and of the 3D isotropic harmonic oscillator .
Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor of n ! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)
These are the first few Laguerre polynomials:
More information , ...
n
L
n
(
x
)
{\displaystyle L_{n}(x)\,}
0
1
{\displaystyle 1\,}
1
−
x
+
1
{\displaystyle -x+1\,}
2
1
2
(
x
2
−
4
x
+
2
)
{\displaystyle {\tfrac {1}{2}}(x^{2}-4x+2)\,}
3
1
6
(
−
x
3
+
9
x
2
−
18
x
+
6
)
{\displaystyle {\tfrac {1}{6}}(-x^{3}+9x^{2}-18x+6)\,}
4
1
24
(
x
4
−
16
x
3
+
72
x
2
−
96
x
+
24
)
{\displaystyle {\tfrac {1}{24}}(x^{4}-16x^{3}+72x^{2}-96x+24)\,}
5
1
120
(
−
x
5
+
25
x
4
−
200
x
3
+
600
x
2
−
600
x
+
120
)
{\displaystyle {\tfrac {1}{120}}(-x^{5}+25x^{4}-200x^{3}+600x^{2}-600x+120)\,}
6
1
720
(
x
6
−
36
x
5
+
450
x
4
−
2400
x
3
+
5400
x
2
−
4320
x
+
720
)
{\displaystyle {\tfrac {1}{720}}(x^{6}-36x^{5}+450x^{4}-2400x^{3}+5400x^{2}-4320x+720)\,}
7
1
5040
(
−
x
7
+
49
x
6
−
882
x
5
+
7350
x
4
−
29400
x
3
+
52920
x
2
−
35280
x
+
5040
)
{\displaystyle {\tfrac {1}{5040}}(-x^{7}+49x^{6}-882x^{5}+7350x^{4}-29400x^{3}+52920x^{2}-35280x+5040)\,}
8
1
40320
(
x
8
−
64
x
7
+
1568
x
6
−
18816
x
5
+
117600
x
4
−
376320
x
3
+
564480
x
2
−
322560
x
+
40320
)
{\displaystyle {\tfrac {1}{40320}}(x^{8}-64x^{7}+1568x^{6}-18816x^{5}+117600x^{4}-376320x^{3}+564480x^{2}-322560x+40320)\,}
9
1
362880
(
−
x
9
+
81
x
8
−
2592
x
7
+
42336
x
6
−
381024
x
5
+
1905120
x
4
−
5080320
x
3
+
6531840
x
2
−
3265920
x
+
362880
)
{\displaystyle {\tfrac {1}{362880}}(-x^{9}+81x^{8}-2592x^{7}+42336x^{6}-381024x^{5}+1905120x^{4}-5080320x^{3}+6531840x^{2}-3265920x+362880)\,}
10
1
3628800
(
x
10
−
100
x
9
+
4050
x
8
−
86400
x
7
+
1058400
x
6
−
7620480
x
5
+
31752000
x
4
−
72576000
x
3
+
81648000
x
2
−
36288000
x
+
3628800
)
{\displaystyle {\tfrac {1}{3628800}}(x^{10}-100x^{9}+4050x^{8}-86400x^{7}+1058400x^{6}-7620480x^{5}+31752000x^{4}-72576000x^{3}+81648000x^{2}-36288000x+3628800)\,}
n
1
n
!
(
(
−
x
)
n
+
n
2
(
−
x
)
n
−
1
+
⋯
+
n
(
n
!
)
(
−
x
)
+
n
!
)
{\displaystyle {\tfrac {1}{n!}}((-x)^{n}+n^{2}(-x)^{n-1}+\dots +n({n!})(-x)+n!)\,}
Close
The first six Laguerre polynomials.
For arbitrary real α the polynomial solutions of the differential equation[2]
x
y
″
+
(
α
+
1
−
x
)
y
′
+
n
y
=
0
{\displaystyle x\,y''+\left(\alpha +1-x\right)y'+n\,y=0}
are called generalized Laguerre polynomials , or associated Laguerre polynomials .
One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials as
L
0
(
α
)
(
x
)
=
1
{\displaystyle L_{0}^{(\alpha )}(x)=1}
L
1
(
α
)
(
x
)
=
1
+
α
−
x
{\displaystyle L_{1}^{(\alpha )}(x)=1+\alpha -x}
and then using the following recurrence relation for any k ≥ 1 :
L
k
+
1
(
α
)
(
x
)
=
(
2
k
+
1
+
α
−
x
)
L
k
(
α
)
(
x
)
−
(
k
+
α
)
L
k
−
1
(
α
)
(
x
)
k
+
1
.
{\displaystyle L_{k+1}^{(\alpha )}(x)={\frac {(2k+1+\alpha -x)L_{k}^{(\alpha )}(x)-(k+\alpha )L_{k-1}^{(\alpha )}(x)}{k+1}}.}
The simple Laguerre polynomials are the special case α = 0 of the generalized Laguerre polynomials:
L
n
(
0
)
(
x
)
=
L
n
(
x
)
.
{\displaystyle L_{n}^{(0)}(x)=L_{n}(x).}
The Rodrigues formula for them is
L
n
(
α
)
(
x
)
=
x
−
α
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
+
α
)
=
x
−
α
n
!
(
d
d
x
−
1
)
n
x
n
+
α
.
{\displaystyle L_{n}^{(\alpha )}(x)={x^{-\alpha }e^{x} \over n!}{d^{n} \over dx^{n}}\left(e^{-x}x^{n+\alpha }\right)={\frac {x^{-\alpha }}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n+\alpha }.}
The generating function for them is
∑
n
=
0
∞
t
n
L
n
(
α
)
(
x
)
=
1
(
1
−
t
)
α
+
1
e
−
t
x
/
(
1
−
t
)
.
{\displaystyle \sum _{n=0}^{\infty }t^{n}L_{n}^{(\alpha )}(x)={\frac {1}{(1-t)^{\alpha +1}}}e^{-tx/(1-t)}.}
The first few generalized Laguerre polynomials, Ln (k ) (x )
Explicit examples and properties of the generalized Laguerre polynomials
Laguerre functions are defined by confluent hypergeometric functions and Kummer's transformation as[3]
L
n
(
α
)
(
x
)
:=
(
n
+
α
n
)
M
(
−
n
,
α
+
1
,
x
)
.
{\displaystyle L_{n}^{(\alpha )}(x):={n+\alpha \choose n}M(-n,\alpha +1,x).}
where
(
n
+
α
n
)
{\textstyle {n+\alpha \choose n}}
is a generalized binomial coefficient . When n is an integer the function reduces to a polynomial of degree n . It has the alternative expression[4]
L
n
(
α
)
(
x
)
=
(
−
1
)
n
n
!
U
(
−
n
,
α
+
1
,
x
)
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{n!}}U(-n,\alpha +1,x)}
in terms of Kummer's function of the second kind .
The closed form for these generalized Laguerre polynomials of degree n is[5]
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
−
1
)
i
(
n
+
α
n
−
i
)
x
i
i
!
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}{\frac {x^{i}}{i!}}}
derived by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.
Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, let
D
=
d
d
x
{\displaystyle D={\frac {d}{dx}}}
and consider the differential operator
M
=
x
D
2
+
(
α
+
1
)
D
{\displaystyle M=xD^{2}+(\alpha +1)D}
. Then
exp
(
−
t
M
)
x
n
=
(
−
1
)
n
t
n
n
!
L
n
(
α
)
(
x
t
)
{\displaystyle \exp(-tM)x^{n}=(-1)^{n}t^{n}n!L_{n}^{(\alpha )}\left({\frac {x}{t}}\right)}
.[ citation needed ]
The first few generalized Laguerre polynomials are:
More information , ...
n
L
n
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)\,}
0
1
{\displaystyle 1\,}
1
−
x
+
α
+
1
{\displaystyle -x+\alpha +1\,}
2
1
2
(
x
2
−
2
(
α
+
2
)
x
+
(
α
+
1
)
(
α
+
2
)
)
{\displaystyle {\tfrac {1}{2}}(x^{2}-2\left(\alpha +2\right)x+\left(\alpha +1\right)\left(\alpha +2\right))\,}
3
1
6
(
−
x
3
+
3
(
α
+
3
)
x
2
−
3
(
α
+
2
)
(
α
+
3
)
x
+
(
α
+
1
)
(
α
+
2
)
(
α
+
3
)
)
{\displaystyle {\tfrac {1}{6}}(-x^{3}+3\left(\alpha +3\right)x^{2}-3\left(\alpha +2\right)\left(\alpha +3\right)x+\left(\alpha +1\right)\left(\alpha +2\right)\left(\alpha +3\right))\,}
4
1
24
(
x
4
−
4
(
α
+
4
)
x
3
+
6
(
α
+
3
)
(
α
+
4
)
x
2
−
4
(
α
+
2
)
⋯
(
α
+
4
)
x
+
(
α
+
1
)
⋯
(
α
+
4
)
)
{\displaystyle {\tfrac {1}{24}}(x^{4}-4\left(\alpha +4\right)x^{3}+6\left(\alpha +3\right)\left(\alpha +4\right)x^{2}-4\left(\alpha +2\right)\cdots \left(\alpha +4\right)x+\left(\alpha +1\right)\cdots \left(\alpha +4\right))\,}
5
1
120
(
−
x
5
+
5
(
α
+
5
)
x
4
−
10
(
α
+
4
)
(
α
+
5
)
x
3
+
10
(
α
+
3
)
⋯
(
α
+
5
)
x
2
−
5
(
α
+
2
)
⋯
(
α
+
5
)
x
+
(
α
+
1
)
⋯
(
α
+
5
)
)
{\displaystyle {\tfrac {1}{120}}(-x^{5}+5\left(\alpha +5\right)x^{4}-10\left(\alpha +4\right)\left(\alpha +5\right)x^{3}+10\left(\alpha +3\right)\cdots \left(\alpha +5\right)x^{2}-5\left(\alpha +2\right)\cdots \left(\alpha +5\right)x+\left(\alpha +1\right)\cdots \left(\alpha +5\right))\,}
6
1
720
(
x
6
−
6
(
α
+
6
)
x
5
+
15
(
α
+
5
)
(
α
+
6
)
x
4
−
20
(
α
+
4
)
⋯
(
α
+
6
)
x
3
+
15
(
α
+
3
)
⋯
(
α
+
6
)
x
2
−
6
(
α
+
2
)
⋯
(
α
+
6
)
x
+
(
α
+
1
)
⋯
(
α
+
6
)
)
{\displaystyle {\tfrac {1}{720}}(x^{6}-6\left(\alpha +6\right)x^{5}+15\left(\alpha +5\right)\left(\alpha +6\right)x^{4}-20\left(\alpha +4\right)\cdots \left(\alpha +6\right)x^{3}+15\left(\alpha +3\right)\cdots \left(\alpha +6\right)x^{2}-6\left(\alpha +2\right)\cdots \left(\alpha +6\right)x+\left(\alpha +1\right)\cdots \left(\alpha +6\right))\,}
7
1
5040
(
−
x
7
+
7
(
α
+
7
)
x
6
−
21
(
α
+
6
)
(
α
+
7
)
x
5
+
35
(
α
+
5
)
⋯
(
α
+
7
)
x
4
−
35
(
α
+
4
)
⋯
(
α
+
7
)
x
3
+
21
(
α
+
3
)
⋯
(
α
+
7
)
x
2
−
7
(
α
+
2
)
⋯
(
α
+
7
)
x
+
(
α
+
1
)
⋯
(
α
+
7
)
)
{\displaystyle {\tfrac {1}{5040}}(-x^{7}+7\left(\alpha +7\right)x^{6}-21\left(\alpha +6\right)\left(\alpha +7\right)x^{5}+35\left(\alpha +5\right)\cdots \left(\alpha +7\right)x^{4}-35\left(\alpha +4\right)\cdots \left(\alpha +7\right)x^{3}+21\left(\alpha +3\right)\cdots \left(\alpha +7\right)x^{2}-7\left(\alpha +2\right)\cdots \left(\alpha +7\right)x+\left(\alpha +1\right)\cdots \left(\alpha +7\right))\,}
8
1
40320
(
x
8
−
8
(
α
+
8
)
x
7
+
28
(
α
+
7
)
(
α
+
8
)
x
6
−
56
(
α
+
6
)
⋯
(
α
+
8
)
x
5
+
70
(
α
+
5
)
⋯
(
α
+
8
)
x
4
−
56
(
α
+
4
)
⋯
(
α
+
8
)
x
3
+
28
(
α
+
3
)
⋯
(
α
+
8
)
x
2
−
8
(
α
+
2
)
⋯
(
α
+
8
)
x
+
(
α
+
1
)
⋯
(
α
+
8
)
)
{\displaystyle {\tfrac {1}{40320}}(x^{8}-8\left(\alpha +8\right)x^{7}+28\left(\alpha +7\right)\left(\alpha +8\right)x^{6}-56\left(\alpha +6\right)\cdots \left(\alpha +8\right)x^{5}+70\left(\alpha +5\right)\cdots \left(\alpha +8\right)x^{4}-56\left(\alpha +4\right)\cdots \left(\alpha +8\right)x^{3}+28\left(\alpha +3\right)\cdots \left(\alpha +8\right)x^{2}-8\left(\alpha +2\right)\cdots \left(\alpha +8\right)x+\left(\alpha +1\right)\cdots \left(\alpha +8\right))\,}
9
1
362880
(
−
x
9
+
9
(
α
+
9
)
x
8
−
36
(
α
+
8
)
(
α
+
9
)
x
7
+
84
(
α
+
7
)
⋯
(
α
+
9
)
x
6
−
126
(
α
+
6
)
⋯
(
α
+
9
)
x
5
+
126
(
α
+
5
)
⋯
(
α
+
9
)
x
4
−
84
(
α
+
4
)
⋯
(
α
+
9
)
x
3
+
36
(
α
+
3
)
⋯
(
α
+
9
)
x
2
−
9
(
α
+
2
)
⋯
(
α
+
9
)
x
+
(
α
+
1
)
⋯
(
α
+
9
)
)
{\displaystyle {\tfrac {1}{362880}}(-x^{9}+9\left(\alpha +9\right)x^{8}-36\left(\alpha +8\right)\left(\alpha +9\right)x^{7}+84\left(\alpha +7\right)\cdots \left(\alpha +9\right)x^{6}-126\left(\alpha +6\right)\cdots \left(\alpha +9\right)x^{5}+126\left(\alpha +5\right)\cdots \left(\alpha +9\right)x^{4}-84\left(\alpha +4\right)\cdots \left(\alpha +9\right)x^{3}+36\left(\alpha +3\right)\cdots \left(\alpha +9\right)x^{2}-9\left(\alpha +2\right)\cdots \left(\alpha +9\right)x+\left(\alpha +1\right)\cdots \left(\alpha +9\right))\,}
10
1
3628800
(
x
10
−
10
(
α
+
10
)
x
9
+
45
(
α
+
9
)
(
α
+
10
)
x
8
−
120
(
α
+
8
)
⋯
(
α
+
10
)
x
7
+
210
(
α
+
7
)
⋯
(
α
+
10
)
x
6
−
252
(
α
+
6
)
⋯
(
α
+
10
)
x
5
+
210
(
α
+
5
)
⋯
(
α
+
10
)
x
4
−
120
(
α
+
4
)
⋯
(
α
+
10
)
x
3
+
45
(
α
+
3
)
⋯
(
α
+
10
)
x
2
−
10
(
α
+
2
)
⋯
(
α
+
10
)
x
+
(
α
+
1
)
⋯
(
α
+
10
)
)
{\displaystyle {\tfrac {1}{3628800}}(x^{10}-10\left(\alpha +10\right)x^{9}+45\left(\alpha +9\right)\left(\alpha +10\right)x^{8}-120\left(\alpha +8\right)\cdots \left(\alpha +10\right)x^{7}+210\left(\alpha +7\right)\cdots \left(\alpha +10\right)x^{6}-252\left(\alpha +6\right)\cdots \left(\alpha +10\right)x^{5}+210\left(\alpha +5\right)\cdots \left(\alpha +10\right)x^{4}-120\left(\alpha +4\right)\cdots \left(\alpha +10\right)x^{3}+45\left(\alpha +3\right)\cdots \left(\alpha +10\right)x^{2}-10\left(\alpha +2\right)\cdots \left(\alpha +10\right)x+\left(\alpha +1\right)\cdots \left(\alpha +10\right))\,}
Close
The coefficient of the leading term is (−1)n /n ! ;
The constant term , which is the value at 0, is
L
n
(
α
)
(
0
)
=
(
n
+
α
n
)
=
Γ
(
n
+
α
+
1
)
n
!
Γ
(
α
+
1
)
;
{\displaystyle L_{n}^{(\alpha )}(0)={n+\alpha \choose n}={\frac {\Gamma (n+\alpha +1)}{n!\,\Gamma (\alpha +1)}};}
If α is non-negative, then L n (α ) has n real , strictly positive roots (notice that
(
(
−
1
)
n
−
i
L
n
−
i
(
α
)
)
i
=
0
n
{\displaystyle \left((-1)^{n-i}L_{n-i}^{(\alpha )}\right)_{i=0}^{n}}
is a Sturm chain ), which are all in the interval
(
0
,
n
+
α
+
(
n
−
1
)
n
+
α
]
.
{\displaystyle \left(0,n+\alpha +(n-1){\sqrt {n+\alpha }}\,\right].}
[ citation needed ]
The polynomials' asymptotic behaviour for large n , but fixed α and x > 0 , is given by[6] [7]
L
n
(
α
)
(
x
)
=
n
α
2
−
1
4
π
e
x
2
x
α
2
+
1
4
sin
(
2
n
x
−
π
2
(
α
−
1
2
)
)
+
O
(
n
α
2
−
3
4
)
,
L
n
(
α
)
(
−
x
)
=
(
n
+
1
)
α
2
−
1
4
2
π
e
−
x
/
2
x
α
2
+
1
4
e
2
x
(
n
+
1
)
⋅
(
1
+
O
(
1
n
+
1
)
)
,
{\displaystyle {\begin{aligned}&L_{n}^{(\alpha )}(x)={\frac {n^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{\sqrt {\pi }}}{\frac {e^{\frac {x}{2}}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}\sin \left(2{\sqrt {nx}}-{\frac {\pi }{2}}\left(\alpha -{\frac {1}{2}}\right)\right)+O\left(n^{{\frac {\alpha }{2}}-{\frac {3}{4}}}\right),\\[6pt]&L_{n}^{(\alpha )}(-x)={\frac {(n+1)^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{2{\sqrt {\pi }}}}{\frac {e^{-x/2}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}e^{2{\sqrt {x(n+1)}}}\cdot \left(1+O\left({\frac {1}{\sqrt {n+1}}}\right)\right),\end{aligned}}}
and summarizing by
L
n
(
α
)
(
x
n
)
n
α
≈
e
x
/
2
n
⋅
J
α
(
2
x
)
x
α
,
{\displaystyle {\frac {L_{n}^{(\alpha )}\left({\frac {x}{n}}\right)}{n^{\alpha }}}\approx e^{x/2n}\cdot {\frac {J_{\alpha }\left(2{\sqrt {x}}\right)}{{\sqrt {x}}^{\alpha }}},}
where
J
α
{\displaystyle J_{\alpha }}
is the Bessel function .
As a contour integral
Given the generating function specified above, the polynomials may be expressed in terms of a contour integral
L
n
(
α
)
(
x
)
=
1
2
π
i
∮
C
e
−
x
t
/
(
1
−
t
)
(
1
−
t
)
α
+
1
t
n
+
1
d
t
,
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {1}{2\pi i}}\oint _{C}{\frac {e^{-xt/(1-t)}}{(1-t)^{\alpha +1}\,t^{n+1}}}\;dt,}
where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1
Recurrence relations
The addition formula for Laguerre polynomials:[8]
L
n
(
α
+
β
+
1
)
(
x
+
y
)
=
∑
i
=
0
n
L
i
(
α
)
(
x
)
L
n
−
i
(
β
)
(
y
)
.
{\displaystyle L_{n}^{(\alpha +\beta +1)}(x+y)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)L_{n-i}^{(\beta )}(y).}
Laguerre's polynomials satisfy the recurrence relations
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
L
n
−
i
(
α
+
i
)
(
y
)
(
y
−
x
)
i
i
!
,
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}L_{n-i}^{(\alpha +i)}(y){\frac {(y-x)^{i}}{i!}},}
in particular
L
n
(
α
+
1
)
(
x
)
=
∑
i
=
0
n
L
i
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha +1)}(x)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)}
and
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
α
−
β
+
n
−
i
−
1
n
−
i
)
L
i
(
β
)
(
x
)
,
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n-i-1 \choose n-i}L_{i}^{(\beta )}(x),}
or
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
α
−
β
+
n
n
−
i
)
L
i
(
β
−
i
)
(
x
)
;
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n \choose n-i}L_{i}^{(\beta -i)}(x);}
moreover
L
n
(
α
)
(
x
)
−
∑
j
=
0
Δ
−
1
(
n
+
α
n
−
j
)
(
−
1
)
j
x
j
j
!
=
(
−
1
)
Δ
x
Δ
(
Δ
−
1
)
!
∑
i
=
0
n
−
Δ
(
n
+
α
n
−
Δ
−
i
)
(
n
−
i
)
(
n
i
)
L
i
(
α
+
Δ
)
(
x
)
=
(
−
1
)
Δ
x
Δ
(
Δ
−
1
)
!
∑
i
=
0
n
−
Δ
(
n
+
α
−
i
−
1
n
−
Δ
−
i
)
(
n
−
i
)
(
n
i
)
L
i
(
n
+
α
+
Δ
−
i
)
(
x
)
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)-\sum _{j=0}^{\Delta -1}{n+\alpha \choose n-j}(-1)^{j}{\frac {x^{j}}{j!}}&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(\alpha +\Delta )}(x)\\[6pt]&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha -i-1 \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(n+\alpha +\Delta -i)}(x)\end{aligned}}}
They can be used to derive the four 3-point-rules
L
n
(
α
)
(
x
)
=
L
n
(
α
+
1
)
(
x
)
−
L
n
−
1
(
α
+
1
)
(
x
)
=
∑
j
=
0
k
(
k
j
)
(
−
1
)
j
L
n
−
j
(
α
+
k
)
(
x
)
,
n
L
n
(
α
)
(
x
)
=
(
n
+
α
)
L
n
−
1
(
α
)
(
x
)
−
x
L
n
−
1
(
α
+
1
)
(
x
)
,
or
x
k
k
!
L
n
(
α
)
(
x
)
=
∑
i
=
0
k
(
−
1
)
i
(
n
+
i
i
)
(
n
+
α
k
−
i
)
L
n
+
i
(
α
−
k
)
(
x
)
,
n
L
n
(
α
+
1
)
(
x
)
=
(
n
−
x
)
L
n
−
1
(
α
+
1
)
(
x
)
+
(
n
+
α
)
L
n
−
1
(
α
)
(
x
)
x
L
n
(
α
+
1
)
(
x
)
=
(
n
+
α
)
L
n
−
1
(
α
)
(
x
)
−
(
n
−
x
)
L
n
(
α
)
(
x
)
;
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=L_{n}^{(\alpha +1)}(x)-L_{n-1}^{(\alpha +1)}(x)=\sum _{j=0}^{k}{k \choose j}(-1)^{j}L_{n-j}^{(\alpha +k)}(x),\\[10pt]nL_{n}^{(\alpha )}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-xL_{n-1}^{(\alpha +1)}(x),\\[10pt]&{\text{or }}\\{\frac {x^{k}}{k!}}L_{n}^{(\alpha )}(x)&=\sum _{i=0}^{k}(-1)^{i}{n+i \choose i}{n+\alpha \choose k-i}L_{n+i}^{(\alpha -k)}(x),\\[10pt]nL_{n}^{(\alpha +1)}(x)&=(n-x)L_{n-1}^{(\alpha +1)}(x)+(n+\alpha )L_{n-1}^{(\alpha )}(x)\\[10pt]xL_{n}^{(\alpha +1)}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-(n-x)L_{n}^{(\alpha )}(x);\end{aligned}}}
combined they give this additional, useful recurrence relations
L
n
(
α
)
(
x
)
=
(
2
+
α
−
1
−
x
n
)
L
n
−
1
(
α
)
(
x
)
−
(
1
+
α
−
1
n
)
L
n
−
2
(
α
)
(
x
)
=
α
+
1
−
x
n
L
n
−
1
(
α
+
1
)
(
x
)
−
x
n
L
n
−
2
(
α
+
2
)
(
x
)
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=\left(2+{\frac {\alpha -1-x}{n}}\right)L_{n-1}^{(\alpha )}(x)-\left(1+{\frac {\alpha -1}{n}}\right)L_{n-2}^{(\alpha )}(x)\\[10pt]&={\frac {\alpha +1-x}{n}}L_{n-1}^{(\alpha +1)}(x)-{\frac {x}{n}}L_{n-2}^{(\alpha +2)}(x)\end{aligned}}}
Since
L
n
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)}
is a monic polynomial of degree
n
{\displaystyle n}
in
α
{\displaystyle \alpha }
,
there is the partial fraction decomposition
n
!
L
n
(
α
)
(
x
)
(
α
+
1
)
n
=
1
−
∑
j
=
1
n
(
−
1
)
j
j
α
+
j
(
n
j
)
L
n
(
−
j
)
(
x
)
=
1
−
∑
j
=
1
n
x
j
α
+
j
L
n
−
j
(
j
)
(
x
)
(
j
−
1
)
!
=
1
−
x
∑
i
=
1
n
L
n
−
i
(
−
α
)
(
x
)
L
i
−
1
(
α
+
1
)
(
−
x
)
α
+
i
.
{\displaystyle {\begin{aligned}{\frac {n!\,L_{n}^{(\alpha )}(x)}{(\alpha +1)_{n}}}&=1-\sum _{j=1}^{n}(-1)^{j}{\frac {j}{\alpha +j}}{n \choose j}L_{n}^{(-j)}(x)\\&=1-\sum _{j=1}^{n}{\frac {x^{j}}{\alpha +j}}\,\,{\frac {L_{n-j}^{(j)}(x)}{(j-1)!}}\\&=1-x\sum _{i=1}^{n}{\frac {L_{n-i}^{(-\alpha )}(x)L_{i-1}^{(\alpha +1)}(-x)}{\alpha +i}}.\end{aligned}}}
The second equality follows by the following identity, valid for integer i and n and immediate from the expression of
L
n
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)}
in terms of Charlier polynomials :
(
−
x
)
i
i
!
L
n
(
i
−
n
)
(
x
)
=
(
−
x
)
n
n
!
L
i
(
n
−
i
)
(
x
)
.
{\displaystyle {\frac {(-x)^{i}}{i!}}L_{n}^{(i-n)}(x)={\frac {(-x)^{n}}{n!}}L_{i}^{(n-i)}(x).}
For the third equality apply the fourth and fifth identities of this section.
Derivatives of generalized Laguerre polynomials
Differentiating the power series representation of a generalized Laguerre polynomial k times leads to
d
k
d
x
k
L
n
(
α
)
(
x
)
=
{
(
−
1
)
k
L
n
−
k
(
α
+
k
)
(
x
)
if
k
≤
n
,
0
otherwise.
{\displaystyle {\frac {d^{k}}{dx^{k}}}L_{n}^{(\alpha )}(x)={\begin{cases}(-1)^{k}L_{n-k}^{(\alpha +k)}(x)&{\text{if }}k\leq n,\\0&{\text{otherwise.}}\end{cases}}}
This points to a special case (α = 0 ) of the formula above: for integer α = k the generalized polynomial may be written
L
n
(
k
)
(
x
)
=
(
−
1
)
k
d
k
L
n
+
k
(
x
)
d
x
k
,
{\displaystyle L_{n}^{(k)}(x)=(-1)^{k}{\frac {d^{k}L_{n+k}(x)}{dx^{k}}},}
the shift by k sometimes causing confusion with the usual parenthesis notation for a derivative.
Moreover, the following equation holds:
1
k
!
d
k
d
x
k
x
α
L
n
(
α
)
(
x
)
=
(
n
+
α
k
)
x
α
−
k
L
n
(
α
−
k
)
(
x
)
,
{\displaystyle {\frac {1}{k!}}{\frac {d^{k}}{dx^{k}}}x^{\alpha }L_{n}^{(\alpha )}(x)={n+\alpha \choose k}x^{\alpha -k}L_{n}^{(\alpha -k)}(x),}
which generalizes with Cauchy's formula to
L
n
(
α
′
)
(
x
)
=
(
α
′
−
α
)
(
α
′
+
n
α
′
−
α
)
∫
0
x
t
α
(
x
−
t
)
α
′
−
α
−
1
x
α
′
L
n
(
α
)
(
t
)
d
t
.
{\displaystyle L_{n}^{(\alpha ')}(x)=(\alpha '-\alpha ){\alpha '+n \choose \alpha '-\alpha }\int _{0}^{x}{\frac {t^{\alpha }(x-t)^{\alpha '-\alpha -1}}{x^{\alpha '}}}L_{n}^{(\alpha )}(t)\,dt.}
The derivative with respect to the second variable α has the form,[9]
d
d
α
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
−
1
L
i
(
α
)
(
x
)
n
−
i
.
{\displaystyle {\frac {d}{d\alpha }}L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n-1}{\frac {L_{i}^{(\alpha )}(x)}{n-i}}.}
The generalized Laguerre polynomials obey the differential equation
x
L
n
(
α
)
′
′
(
x
)
+
(
α
+
1
−
x
)
L
n
(
α
)
′
(
x
)
+
n
L
n
(
α
)
(
x
)
=
0
,
{\displaystyle xL_{n}^{(\alpha )\prime \prime }(x)+(\alpha +1-x)L_{n}^{(\alpha )\prime }(x)+nL_{n}^{(\alpha )}(x)=0,}
which may be compared with the equation obeyed by the k th derivative of the ordinary Laguerre polynomial,
x
L
n
[
k
]
′
′
(
x
)
+
(
k
+
1
−
x
)
L
n
[
k
]
′
(
x
)
+
(
n
−
k
)
L
n
[
k
]
(
x
)
=
0
,
{\displaystyle xL_{n}^{[k]\prime \prime }(x)+(k+1-x)L_{n}^{[k]\prime }(x)+(n-k)L_{n}^{[k]}(x)=0,}
where
L
n
[
k
]
(
x
)
≡
d
k
L
n
(
x
)
d
x
k
{\displaystyle L_{n}^{[k]}(x)\equiv {\frac {d^{k}L_{n}(x)}{dx^{k}}}}
for this equation only.
In Sturm–Liouville form the differential equation is
−
(
x
α
+
1
e
−
x
⋅
L
n
(
α
)
(
x
)
′
)
′
=
n
⋅
x
α
e
−
x
⋅
L
n
(
α
)
(
x
)
,
{\displaystyle -\left(x^{\alpha +1}e^{-x}\cdot L_{n}^{(\alpha )}(x)^{\prime }\right)'=n\cdot x^{\alpha }e^{-x}\cdot L_{n}^{(\alpha )}(x),}
which shows that L (α) n is an eigenvector for the eigenvalue n .
Orthogonality
The generalized Laguerre polynomials are orthogonal over [ 0, ∞) with respect to the measure with weighting function xα e −x :[10]
∫
0
∞
x
α
e
−
x
L
n
(
α
)
(
x
)
L
m
(
α
)
(
x
)
d
x
=
Γ
(
n
+
α
+
1
)
n
!
δ
n
,
m
,
{\displaystyle \int _{0}^{\infty }x^{\alpha }e^{-x}L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)dx={\frac {\Gamma (n+\alpha +1)}{n!}}\delta _{n,m},}
which follows from
∫
0
∞
x
α
′
−
1
e
−
x
L
n
(
α
)
(
x
)
d
x
=
(
α
−
α
′
+
n
n
)
Γ
(
α
′
)
.
{\displaystyle \int _{0}^{\infty }x^{\alpha '-1}e^{-x}L_{n}^{(\alpha )}(x)dx={\alpha -\alpha '+n \choose n}\Gamma (\alpha ').}
If
Γ
(
x
,
α
+
1
,
1
)
{\displaystyle \Gamma (x,\alpha +1,1)}
denotes the gamma distribution then the orthogonality relation can be written as
∫
0
∞
L
n
(
α
)
(
x
)
L
m
(
α
)
(
x
)
Γ
(
x
,
α
+
1
,
1
)
d
x
=
(
n
+
α
n
)
δ
n
,
m
,
{\displaystyle \int _{0}^{\infty }L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)\Gamma (x,\alpha +1,1)dx={n+\alpha \choose n}\delta _{n,m},}
The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula )[ citation needed ]
K
n
(
α
)
(
x
,
y
)
:=
1
Γ
(
α
+
1
)
∑
i
=
0
n
L
i
(
α
)
(
x
)
L
i
(
α
)
(
y
)
(
α
+
i
i
)
=
1
Γ
(
α
+
1
)
L
n
(
α
)
(
x
)
L
n
+
1
(
α
)
(
y
)
−
L
n
+
1
(
α
)
(
x
)
L
n
(
α
)
(
y
)
x
−
y
n
+
1
(
n
+
α
n
)
=
1
Γ
(
α
+
1
)
∑
i
=
0
n
x
i
i
!
L
n
−
i
(
α
+
i
)
(
x
)
L
n
−
i
(
α
+
i
+
1
)
(
y
)
(
α
+
n
n
)
(
n
i
)
;
{\displaystyle {\begin{aligned}K_{n}^{(\alpha )}(x,y)&:={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {L_{i}^{(\alpha )}(x)L_{i}^{(\alpha )}(y)}{\alpha +i \choose i}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(y)-L_{n+1}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)}{{\frac {x-y}{n+1}}{n+\alpha \choose n}}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {x^{i}}{i!}}{\frac {L_{n-i}^{(\alpha +i)}(x)L_{n-i}^{(\alpha +i+1)}(y)}{{\alpha +n \choose n}{n \choose i}}};\end{aligned}}}
recursively
K
n
(
α
)
(
x
,
y
)
=
y
α
+
1
K
n
−
1
(
α
+
1
)
(
x
,
y
)
+
1
Γ
(
α
+
1
)
L
n
(
α
+
1
)
(
x
)
L
n
(
α
)
(
y
)
(
α
+
n
n
)
.
{\displaystyle K_{n}^{(\alpha )}(x,y)={\frac {y}{\alpha +1}}K_{n-1}^{(\alpha +1)}(x,y)+{\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha +1)}(x)L_{n}^{(\alpha )}(y)}{\alpha +n \choose n}}.}
Moreover,[ clarification needed Limit as n goes to infinity?]
y
α
e
−
y
K
n
(
α
)
(
⋅
,
y
)
→
δ
(
y
−
⋅
)
.
{\displaystyle y^{\alpha }e^{-y}K_{n}^{(\alpha )}(\cdot ,y)\to \delta (y-\cdot ).}
Turán's inequalities can be derived here, which is
L
n
(
α
)
(
x
)
2
−
L
n
−
1
(
α
)
(
x
)
L
n
+
1
(
α
)
(
x
)
=
∑
k
=
0
n
−
1
(
α
+
n
−
1
n
−
k
)
n
(
n
k
)
L
k
(
α
−
1
)
(
x
)
2
>
0.
{\displaystyle L_{n}^{(\alpha )}(x)^{2}-L_{n-1}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(x)=\sum _{k=0}^{n-1}{\frac {\alpha +n-1 \choose n-k}{n{n \choose k}}}L_{k}^{(\alpha -1)}(x)^{2}>0.}
The following integral is needed in the quantum mechanical treatment of the hydrogen atom ,
∫
0
∞
x
α
+
1
e
−
x
[
L
n
(
α
)
(
x
)
]
2
d
x
=
(
n
+
α
)
!
n
!
(
2
n
+
α
+
1
)
.
{\displaystyle \int _{0}^{\infty }x^{\alpha +1}e^{-x}\left[L_{n}^{(\alpha )}(x)\right]^{2}dx={\frac {(n+\alpha )!}{n!}}(2n+\alpha +1).}
Series expansions
Let a function have the (formal) series expansion
f
(
x
)
=
∑
i
=
0
∞
f
i
(
α
)
L
i
(
α
)
(
x
)
.
{\displaystyle f(x)=\sum _{i=0}^{\infty }f_{i}^{(\alpha )}L_{i}^{(\alpha )}(x).}
Then
f
i
(
α
)
=
∫
0
∞
L
i
(
α
)
(
x
)
(
i
+
α
i
)
⋅
x
α
e
−
x
Γ
(
α
+
1
)
⋅
f
(
x
)
d
x
.
{\displaystyle f_{i}^{(\alpha )}=\int _{0}^{\infty }{\frac {L_{i}^{(\alpha )}(x)}{i+\alpha \choose i}}\cdot {\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}\cdot f(x)\,dx.}
The series converges in the associated Hilbert space L 2 [0, ∞) if and only if
‖
f
‖
L
2
2
:=
∫
0
∞
x
α
e
−
x
Γ
(
α
+
1
)
|
f
(
x
)
|
2
d
x
=
∑
i
=
0
∞
(
i
+
α
i
)
|
f
i
(
α
)
|
2
<
∞
.
{\displaystyle \|f\|_{L^{2}}^{2}:=\int _{0}^{\infty }{\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}|f(x)|^{2}\,dx=\sum _{i=0}^{\infty }{i+\alpha \choose i}|f_{i}^{(\alpha )}|^{2}<\infty .}
In quantum mechanics the Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.[11]
Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.[12]
Erdélyi gives the following two multiplication theorems [13]
t
n
+
1
+
α
e
(
1
−
t
)
z
L
n
(
α
)
(
z
t
)
=
∑
k
=
n
∞
(
k
n
)
(
1
−
1
t
)
k
−
n
L
k
(
α
)
(
z
)
,
e
(
1
−
t
)
z
L
n
(
α
)
(
z
t
)
=
∑
k
=
0
∞
(
1
−
t
)
k
z
k
k
!
L
n
(
α
+
k
)
(
z
)
.
{\displaystyle {\begin{aligned}&t^{n+1+\alpha }e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=n}^{\infty }{k \choose n}\left(1-{\frac {1}{t}}\right)^{k-n}L_{k}^{(\alpha )}(z),\\[6pt]&e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=0}^{\infty }{\frac {(1-t)^{k}z^{k}}{k!}}L_{n}^{(\alpha +k)}(z).\end{aligned}}}
The generalized Laguerre polynomials are related to the Hermite polynomials :
H
2
n
(
x
)
=
(
−
1
)
n
2
2
n
n
!
L
n
(
−
1
/
2
)
(
x
2
)
H
2
n
+
1
(
x
)
=
(
−
1
)
n
2
2
n
+
1
n
!
x
L
n
(
1
/
2
)
(
x
2
)
{\displaystyle {\begin{aligned}H_{2n}(x)&=(-1)^{n}2^{2n}n!L_{n}^{(-1/2)}(x^{2})\\[4pt]H_{2n+1}(x)&=(-1)^{n}2^{2n+1}n!xL_{n}^{(1/2)}(x^{2})\end{aligned}}}
where the H n (x ) are the Hermite polynomials based on the weighting function exp(−x 2 ) , the so-called "physicist's version."
Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator .
The Laguerre polynomials may be defined in terms of hypergeometric functions , specifically the confluent hypergeometric functions , as
L
n
(
α
)
(
x
)
=
(
n
+
α
n
)
M
(
−
n
,
α
+
1
,
x
)
=
(
α
+
1
)
n
n
!
1
F
1
(
−
n
,
α
+
1
,
x
)
{\displaystyle L_{n}^{(\alpha )}(x)={n+\alpha \choose n}M(-n,\alpha +1,x)={\frac {(\alpha +1)_{n}}{n!}}\,_{1}F_{1}(-n,\alpha +1,x)}
where
(
a
)
n
{\displaystyle (a)_{n}}
is the Pochhammer symbol (which in this case represents the rising factorial).
The generalized Laguerre polynomials satisfy the Hardy–Hille formula[14] [15]
∑
n
=
0
∞
n
!
Γ
(
α
+
1
)
Γ
(
n
+
α
+
1
)
L
n
(
α
)
(
x
)
L
n
(
α
)
(
y
)
t
n
=
1
(
1
−
t
)
α
+
1
e
−
(
x
+
y
)
t
/
(
1
−
t
)
0
F
1
(
;
α
+
1
;
x
y
t
(
1
−
t
)
2
)
,
{\displaystyle \sum _{n=0}^{\infty }{\frac {n!\,\Gamma \left(\alpha +1\right)}{\Gamma \left(n+\alpha +1\right)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(1-t)^{\alpha +1}}}e^{-(x+y)t/(1-t)}\,_{0}F_{1}\left(;\alpha +1;{\frac {xyt}{(1-t)^{2}}}\right),}
where the series on the left converges for
α
>
−
1
{\displaystyle \alpha >-1}
and
|
t
|
<
1
{\displaystyle |t|<1}
. Using the identity
0
F
1
(
;
α
+
1
;
z
)
=
Γ
(
α
+
1
)
z
−
α
/
2
I
α
(
2
z
)
,
{\displaystyle \,_{0}F_{1}(;\alpha +1;z)=\,\Gamma (\alpha +1)z^{-\alpha /2}I_{\alpha }\left(2{\sqrt {z}}\right),}
(see generalized hypergeometric function ), this can also be written as
∑
n
=
0
∞
n
!
Γ
(
1
+
α
+
n
)
L
n
(
α
)
(
x
)
L
n
(
α
)
(
y
)
t
n
=
1
(
x
y
t
)
α
/
2
(
1
−
t
)
e
−
(
x
+
y
)
t
/
(
1
−
t
)
I
α
(
2
x
y
t
1
−
t
)
.
{\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{\Gamma (1+\alpha +n)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(xyt)^{\alpha /2}(1-t)}}e^{-(x+y)t/(1-t)}I_{\alpha }\left({\frac {2{\sqrt {xyt}}}{1-t}}\right).}
This formula is a generalization of the Mehler kernel for Hermite polynomials , which can be recovered from it by using the relations between Laguerre and Hermite polynomials given above.
The generalized Laguerre polynomials are used to describe the quantum wavefunction for hydrogen atom orbitals.[16] [17] [18] The convention used throughout this article expresses the generalized Laguerre polynomials as [19]
L
n
(
α
)
(
x
)
=
Γ
(
α
+
n
+
1
)
Γ
(
α
+
1
)
n
!
1
F
1
(
−
n
;
α
+
1
;
x
)
,
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {\Gamma (\alpha +n+1)}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x),}
where
1
F
1
(
a
;
b
;
x
)
{\displaystyle \,_{1}F_{1}(a;b;x)}
is the confluent hypergeometric function .
In the physics literature,[18] the generalized Laguerre polynomials are instead defined as
L
¯
n
(
α
)
(
x
)
=
[
Γ
(
α
+
n
+
1
)
]
2
Γ
(
α
+
1
)
n
!
1
F
1
(
−
n
;
α
+
1
;
x
)
.
{\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)={\frac {\left[\Gamma (\alpha +n+1)\right]^{2}}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x).}
The physics version is related to the standard version by
L
¯
n
(
α
)
(
x
)
=
(
n
+
α
)
!
L
n
(
α
)
(
x
)
.
{\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)=(n+\alpha )!L_{n}^{(\alpha )}(x).}
There is yet another, albeit less frequently used, convention in the physics literature [20] [21] [22]
L
~
n
(
α
)
(
x
)
=
(
−
1
)
α
L
¯
n
−
α
(
α
)
.
{\displaystyle {\tilde {L}}_{n}^{(\alpha )}(x)=(-1)^{\alpha }{\bar {L}}_{n-\alpha }^{(\alpha )}.}
D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal. , vol. 46 (2008), no. 6, pp. 3285–3312 doi : 10.1137/07068031X
A&S equation (22.12.6), p. 785
Ratner, Schatz, Mark A., George C. (2001). Quantum Mechanics in Chemistry . 0-13-895491-7: Prentice Hall. pp. 90–91. {{cite book }}
: CS1 maint: location (link ) CS1 maint: multiple names: authors list (link )
Griffiths, David J. (2005). Introduction to quantum mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0131118927 .
Sakurai, J. J. (2011). Modern quantum mechanics (2nd ed.). Boston: Addison-Wesley. ISBN 978-0805382914 .
Merzbacher, Eugen (1998). Quantum mechanics (3rd ed.). New York: Wiley. ISBN 0471887021 .
Abramowitz, Milton (1965). Handbook of mathematical functions, with formulas, graphs, and mathematical tables . New York: Dover Publications. ISBN 978-0-486-61272-0 .
Schiff, Leonard I. (1968). Quantum mechanics (3d ed.). New York: McGraw-Hill. ISBN 0070856435 .
Boas, Mary L. (2006). Mathematical methods in the physical sciences (3rd ed.). Hoboken, NJ: Wiley. ISBN 9780471198260 .
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
G. Szegő, Orthogonal polynomials , 4th edition, Amer. Math. Soc. Colloq. Publ. , vol. 23, Amer. Math. Soc., Providence, RI, 1975.
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
B. Spain, M.G. Smith, Functions of mathematical physics , Van Nostrand Reinhold Company, London, 1970. Chapter 10 deals with Laguerre polynomials.
"Laguerre polynomials" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
Eric W. Weisstein , "Laguerre Polynomial ", From MathWorld—A Wolfram Web Resource.
George Arfken and Hans Weber (2000). Mathematical Methods for Physicists . Academic Press. ISBN 978-0-12-059825-0 .