Inhibin, beta B, also known as INHBB, is a protein which in humans is encoded by the INHBB gene.[5][6] INHBB is a subunit of both activin and inhibin, two closely related glycoproteins with opposing biological effects.
Quick Facts Identifiers, Aliases ...
Close
Inhibin
Inhibins are heterodimeric glycoproteins composed of an α subunit (INHA) and one of two homologous, but distinct, β subunits (βA or βB, this protein). mRNA for the two subunits has been demonstrated in the testes of adult rats.[7] Inhibin can bind specifically to testicular interstitial cells throughout development and may be an important regulator of Leydig cell testosterone production or interstitial cell function.[8]
The inhibin beta B subunit joins the α subunit to form a pituitary FSH secretion inhibitor. Inhibin has been shown to regulate gonadal stromal cell proliferation negatively and to have tumour-suppressor activity. In addition, serum levels of inhibin have been shown to reflect the size of granulosa-cell tumors and can therefore be used as a marker for primary as well as recurrent disease. Because expression in gonadal and various extragonadal tissues may vary severalfold in a tissue-specific fashion, it is proposed that inhibin may be both a growth/differentiation factor and a hormone.
Activin
Furthermore, the beta B subunit forms a homodimer, activin B, and also joins with the beta A subunit to form a heterodimer, activin AB, both of which stimulate FSH secretion.[6]
Sections of testicular tissue from rat revealed positive immunoreactivity against anti-inhibin intensely appeared in Leydig cells.[9] In adult animals, binding of 125I inhibin was localized primarily to the interstitial compartment of the testis.[8] Also, Jin et al., (2001) reported that Leydig cells showed strong positive staining for the inhibin βA subunit in pigs testis.[10]
In situ ligand binding studies have shown that 125I inhibin βA binds specifically to Leydig cells throughout rat testis development. These results suggest that inhibin has been considered as a regulator of Leydig cell differentiated function.[11][12] Recently, additional inhibin specific binding proteins were identified in inhibin target tissues, including pituitary and Leydig cells.[13][14] From these receptors betaglycan (the TGF-β type III receptor) and InhBP/p120 (a membrane-tethered proteoglycan) were identified as putative inhibin receptors and they are all present in Leydig cells. However, a faint positive reaction was detected in Leydig cell cytoplasm in rats treated with anise oil.[9] This may be related to the damaged Leydig cells, as a result of the decreasing of inhibin expression. This may be related to its content of safrole.
INHBB gene has been observed progressively downregulated in Human papillomavirus-positive neoplastic keratinocytes derived from uterine cervical preneoplastic lesions at different levels of malignancy. [15] For this reason, INHBB is likely to be associated with tumorigenesis and may be a potential prognostic marker for uterine cervical preneoplastic lesions progression. [15]
Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F (April 2015). "Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes". J Cell Physiol. 230 (4): 802–812. doi:10.1002/jcp.24808. hdl:11392/2066612. PMID 25205602. S2CID 24986454.
- Ying SY (1988). "Inhibins and activins: chemical properties and biological activity". Proc. Soc. Exp. Biol. Med. 186 (3): 253–64. doi:10.3181/00379727-186-42611a. PMID 3122219. S2CID 36872324.
- Munz B, Hübner G, Tretter Y, et al. (1999). "A novel role of activin in inflammation and repair". J. Endocrinol. 161 (2): 187–93. doi:10.1677/joe.0.1610187. PMID 10320815.
- Welt CK (2002). "The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction". Curr. Opin. Obstet. Gynecol. 14 (3): 317–23. doi:10.1097/00001703-200206000-00012. PMID 12032389. S2CID 44327401.
- Shav-Tal Y, Zipori D (2003). "The role of activin a in regulation of hemopoiesis". Stem Cells. 20 (6): 493–500. doi:10.1634/stemcells.20-6-493. PMID 12456957. S2CID 36242096.
- Lahlou N, Roger M (2005). "Inhibin B in pubertal development and pubertal disorders". Semin. Reprod. Med. 22 (3): 165–75. doi:10.1055/s-2004-831892. PMID 15319819. S2CID 260317318.
- Mathews LS, Vale WW (1991). "Expression cloning of an activin receptor, a predicted transmembrane serine kinase". Cell. 65 (6): 973–82. doi:10.1016/0092-8674(91)90549-E. PMID 1646080. S2CID 36407277.
- Schmelzer CH, Burton LE, Tamony CM, et al. (1990). "Purification and characterization of recombinant human activin B.". Biochim. Biophys. Acta. 1039 (2): 135–41. doi:10.1016/0167-4838(90)90178-I. PMID 2364091.
- Mason AJ, Berkemeier LM, Schmelzer CH, Schwall RH (1990). "Activin B: precursor sequences, genomic structure and in vitro activities". Mol. Endocrinol. 3 (9): 1352–8. doi:10.1210/mend-3-9-1352. PMID 2575216. S2CID 3856861.
- Feng ZM, Bardin CW, Chen CL (1989). "Characterization and regulation of testicular inhibin beta-subunit mRNA". Mol. Endocrinol. 3 (6): 939–48. doi:10.1210/mend-3-6-939. PMID 2739657.
- Barton DE, Yang-Feng TL, Mason AJ, et al. (1989). "Mapping of genes for inhibin subunits alpha, beta A, and beta B on human and mouse chromosomes and studies of jsd mice". Genomics. 5 (1): 91–9. doi:10.1016/0888-7543(89)90091-8. PMID 2767687.
- Burger HG, Igarashi M (1988). "Inhibin: definition and nomenclature, including related substances". Endocrinology. 122 (4): 1701–2. doi:10.1210/endo-122-4-1701. PMID 3345731.
- Mason AJ, Niall HD, Seeburg PH (1986). "Structure of two human ovarian inhibins". Biochem. Biophys. Res. Commun. 135 (3): 957–64. doi:10.1016/0006-291X(86)91021-1. PMID 3754442.
- Martens JW, de Winter JP, Timmerman MA, et al. (1997). "Inhibin interferes with activin signaling at the level of the activin receptor complex in Chinese hamster ovary cells". Endocrinology. 138 (7): 2928–36. doi:10.1210/endo.138.7.5250. PMID 9202237.
- Mellor SL, Cranfield M, Ries R, et al. (2001). "Localization of activin beta(A)-, beta(B)-, and beta(C)-subunits in humanprostate and evidence for formation of new activin heterodimers of beta(C)-subunit" (PDF). J. Clin. Endocrinol. Metab. 85 (12): 4851–8. doi:10.1210/jcem.85.12.7052. PMID 11134153. S2CID 15930364. Archived from the original (PDF) on 2019-02-24.
- Chapman SC, Woodruff TK (2001). "Modulation of activin signal transduction by inhibin B and inhibin-binding protein (INhBP)". Mol. Endocrinol. 15 (4): 668–79. doi:10.1210/mend.15.4.0616. PMID 11266516.
- Salmenkivi K, Arola J, Voutilainen R, et al. (2001). "Inhibin/activin betaB-subunit expression in pheochromocytomas favors benign diagnosis". J. Clin. Endocrinol. Metab. 86 (5): 2231–5. doi:10.1210/jcem.86.5.7446. PMID 11344232.
- Bahathiq AO, Stewart RL, Wells M, et al. (2002). "Production of activins by the human endosalpinx". J. Clin. Endocrinol. Metab. 87 (11): 5283–9. doi:10.1210/jc.2001-011884. PMID 12414903.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.