"Robin's theorem" redirects here. For Robbins' theorem in graph theory, see
Robbins' theorem .
In mathematics , and specifically in number theory , a divisor function is an arithmetic function related to the divisors of an integer . When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms . Divisor functions were studied by Ramanujan , who gave a number of important congruences and identities ; these are treated separately in the article Ramanujan's sum .
Divisor function σ 0 (n ) up to n = 250
Sigma function σ 1 (n ) up to n = 250
Sum of the squares of divisors, σ 2 (n ), up to n = 250
Sum of cubes of divisors, σ 3 (n ) up to n = 250
A related function is the divisor summatory function , which, as the name implies, is a sum over the divisor function.
The sum of positive divisors function σ z (n ), for a real or complex number z , is defined as the sum of the z th powers of the positive divisors of n . It can be expressed in sigma notation as
σ
z
(
n
)
=
∑
d
∣
n
d
z
,
{\displaystyle \sigma _{z}(n)=\sum _{d\mid n}d^{z}\,\!,}
where
d
∣
n
{\displaystyle {d\mid n}}
is shorthand for "d divides n ".
The notations d (n ), ν (n ) and τ (n ) (for the German Teiler = divisors) are also used to denote σ 0 (n ), or the number-of-divisors function [1] [2] (OEIS : A000005 ). When z is 1, the function is called the sigma function or sum-of-divisors function ,[1] [3] and the subscript is often omitted, so σ (n ) is the same as σ 1 (n ) (OEIS : A000203 ).
The aliquot sum s (n ) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS : A001065 ), and equals σ 1 (n ) − n ; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.
For example, σ 0 (12) is the number of the divisors of 12:
σ
0
(
12
)
=
1
0
+
2
0
+
3
0
+
4
0
+
6
0
+
12
0
=
1
+
1
+
1
+
1
+
1
+
1
=
6
,
{\displaystyle {\begin{aligned}\sigma _{0}(12)&=1^{0}+2^{0}+3^{0}+4^{0}+6^{0}+12^{0}\\&=1+1+1+1+1+1=6,\end{aligned}}}
while σ 1 (12) is the sum of all the divisors:
σ
1
(
12
)
=
1
1
+
2
1
+
3
1
+
4
1
+
6
1
+
12
1
=
1
+
2
+
3
+
4
+
6
+
12
=
28
,
{\displaystyle {\begin{aligned}\sigma _{1}(12)&=1^{1}+2^{1}+3^{1}+4^{1}+6^{1}+12^{1}\\&=1+2+3+4+6+12=28,\end{aligned}}}
and the aliquot sum s(12) of proper divisors is:
s
(
12
)
=
1
1
+
2
1
+
3
1
+
4
1
+
6
1
=
1
+
2
+
3
+
4
+
6
=
16.
{\displaystyle {\begin{aligned}s(12)&=1^{1}+2^{1}+3^{1}+4^{1}+6^{1}\\&=1+2+3+4+6=16.\end{aligned}}}
σ −1 (n ) is sometimes called the abundancy index of n , and we have:
σ
−
1
(
12
)
=
1
−
1
+
2
−
1
+
3
−
1
+
4
−
1
+
6
−
1
+
12
−
1
=
1
1
+
1
2
+
1
3
+
1
4
+
1
6
+
1
12
=
12
12
+
6
12
+
4
12
+
3
12
+
2
12
+
1
12
=
12
+
6
+
4
+
3
+
2
+
1
12
=
28
12
=
7
3
=
σ
1
(
12
)
12
{\displaystyle {\begin{aligned}\sigma _{-1}(12)&=1^{-1}+2^{-1}+3^{-1}+4^{-1}+6^{-1}+12^{-1}\\[6pt]&={\tfrac {1}{1}}+{\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{4}}+{\tfrac {1}{6}}+{\tfrac {1}{12}}\\[6pt]&={\tfrac {12}{12}}+{\tfrac {6}{12}}+{\tfrac {4}{12}}+{\tfrac {3}{12}}+{\tfrac {2}{12}}+{\tfrac {1}{12}}\\[6pt]&={\tfrac {12+6+4+3+2+1}{12}}={\tfrac {28}{12}}={\tfrac {7}{3}}={\tfrac {\sigma _{1}(12)}{12}}\end{aligned}}}
The cases x = 2 to 5 are listed in OEIS : A001157 through OEIS : A001160 , x = 6 to 24 are listed in OEIS : A013954 through OEIS : A013972 .
More information n, factorization ...
n factorization 𝜎 0 (n )𝜎 1 (n )𝜎 2 (n )𝜎 3 (n )𝜎 4 (n )
1 1 1 1 1 1 1
2 2 2 3 5 9 17
3 3 2 4 10 28 82
4 22 3 7 21 73 273
5 5 2 6 26 126 626
6 2×3 4 12 50 252 1394
7 7 2 8 50 344 2402
8 23 4 15 85 585 4369
9 32 3 13 91 757 6643
10 2×5 4 18 130 1134 10642
11 11 2 12 122 1332 14642
12 22 ×3 6 28 210 2044 22386
13 13 2 14 170 2198 28562
14 2×7 4 24 250 3096 40834
15 3×5 4 24 260 3528 51332
16 24 5 31 341 4681 69905
17 17 2 18 290 4914 83522
18 2×32 6 39 455 6813 112931
19 19 2 20 362 6860 130322
20 22 ×5 6 42 546 9198 170898
21 3×7 4 32 500 9632 196964
22 2×11 4 36 610 11988 248914
23 23 2 24 530 12168 279842
24 23 ×3 8 60 850 16380 358258
25 52 3 31 651 15751 391251
26 2×13 4 42 850 19782 485554
27 33 4 40 820 20440 538084
28 22 ×7 6 56 1050 25112 655746
29 29 2 30 842 24390 707282
30 2×3×5 8 72 1300 31752 872644
31 31 2 32 962 29792 923522
32 25 6 63 1365 37449 1118481
33 3×11 4 48 1220 37296 1200644
34 2×17 4 54 1450 44226 1419874
35 5×7 4 48 1300 43344 1503652
36 22 ×32 9 91 1911 55261 1813539
37 37 2 38 1370 50654 1874162
38 2×19 4 60 1810 61740 2215474
39 3×13 4 56 1700 61544 2342084
40 23 ×5 8 90 2210 73710 2734994
41 41 2 42 1682 68922 2825762
42 2×3×7 8 96 2500 86688 3348388
43 43 2 44 1850 79508 3418802
44 22 ×11 6 84 2562 97236 3997266
45 32 ×5 6 78 2366 95382 4158518
46 2×23 4 72 2650 109512 4757314
47 47 2 48 2210 103824 4879682
48 24 ×3 10 124 3410 131068 5732210
49 72 3 57 2451 117993 5767203
50 2×52 6 93 3255 141759 6651267
Close
For a prime number p ,
σ
0
(
p
)
=
2
σ
0
(
p
n
)
=
n
+
1
σ
1
(
p
)
=
p
+
1
{\displaystyle {\begin{aligned}\sigma _{0}(p)&=2\\\sigma _{0}(p^{n})&=n+1\\\sigma _{1}(p)&=p+1\end{aligned}}}
because by definition, the factors of a prime number are 1 and itself. Also, where pn # denotes the primorial ,
σ
0
(
p
n
#
)
=
2
n
{\displaystyle \sigma _{0}(p_{n}\#)=2^{n}}
since n prime factors allow a sequence of binary selection (
p
i
{\displaystyle p_{i}}
or 1) from n terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a power of two ; instead, the smallest such number may be obtained by multiplying together the first n Fermi–Dirac primes , prime powers whose exponent is a power of two.[4]
Clearly,
1
<
σ
0
(
n
)
<
n
{\displaystyle 1<\sigma _{0}(n)<n}
for all
n
>
2
{\displaystyle n>2}
, and
σ
x
(
n
)
>
n
{\displaystyle \sigma _{x}(n)>n}
for all
n
>
1
{\displaystyle n>1}
,
x
>
0
{\displaystyle x>0}
.
The divisor function is multiplicative (since each divisor c of the product mn with
gcd
(
m
,
n
)
=
1
{\displaystyle \gcd(m,n)=1}
distinctively correspond to a divisor a of m and a divisor b of n ), but not completely multiplicative :
gcd
(
a
,
b
)
=
1
⟹
σ
x
(
a
b
)
=
σ
x
(
a
)
σ
x
(
b
)
.
{\displaystyle \gcd(a,b)=1\Longrightarrow \sigma _{x}(ab)=\sigma _{x}(a)\sigma _{x}(b).}
The consequence of this is that, if we write
n
=
∏
i
=
1
r
p
i
a
i
{\displaystyle n=\prod _{i=1}^{r}p_{i}^{a_{i}}}
where r = ω (n ) is the number of distinct prime factors of n , pi is the i th prime factor, and ai is the maximum power of pi by which n is divisible , then we have:
σ
x
(
n
)
=
∏
i
=
1
r
∑
j
=
0
a
i
p
i
j
x
=
∏
i
=
1
r
(
1
+
p
i
x
+
p
i
2
x
+
⋯
+
p
i
a
i
x
)
.
{\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}\sum _{j=0}^{a_{i}}p_{i}^{jx}=\prod _{i=1}^{r}\left(1+p_{i}^{x}+p_{i}^{2x}+\cdots +p_{i}^{a_{i}x}\right).}
which, when x ≠ 0, is equivalent to the useful formula:
σ
x
(
n
)
=
∏
i
=
1
r
p
i
(
a
i
+
1
)
x
−
1
p
i
x
−
1
.
{\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}{\frac {p_{i}^{(a_{i}+1)x}-1}{p_{i}^{x}-1}}.}
When x = 0,
σ
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is:
σ
0
(
n
)
=
∏
i
=
1
r
(
a
i
+
1
)
.
{\displaystyle \sigma _{0}(n)=\prod _{i=1}^{r}(a_{i}+1).}
This result can be directly deduced from the fact that all divisors of
n
{\displaystyle n}
are uniquely determined by the distinct tuples
(
x
1
,
x
2
,
.
.
.
,
x
i
,
.
.
.
,
x
r
)
{\displaystyle (x_{1},x_{2},...,x_{i},...,x_{r})}
of integers with
0
≤
x
i
≤
a
i
{\displaystyle 0\leq x_{i}\leq a_{i}}
(i.e.
a
i
+
1
{\displaystyle a_{i}+1}
independent choices for each
x
i
{\displaystyle x_{i}}
).
For example, if n is 24, there are two prime factors (p 1 is 2; p 2 is 3); noting that 24 is the product of 23 ×31 , a 1 is 3 and a 2 is 1. Thus we can calculate
σ
0
(
24
)
{\displaystyle \sigma _{0}(24)}
as so:
σ
0
(
24
)
=
∏
i
=
1
2
(
a
i
+
1
)
=
(
3
+
1
)
(
1
+
1
)
=
4
⋅
2
=
8.
{\displaystyle \sigma _{0}(24)=\prod _{i=1}^{2}(a_{i}+1)=(3+1)(1+1)=4\cdot 2=8.}
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
Other properties and identities
Euler proved the remarkable recurrence:[6] [7] [8]
σ
1
(
n
)
=
σ
1
(
n
−
1
)
+
σ
1
(
n
−
2
)
−
σ
1
(
n
−
5
)
−
σ
1
(
n
−
7
)
+
σ
1
(
n
−
12
)
+
σ
1
(
n
−
15
)
+
⋯
=
∑
i
∈
N
(
−
1
)
i
+
1
(
σ
1
(
n
−
1
2
(
3
i
2
−
i
)
)
+
σ
1
(
n
−
1
2
(
3
i
2
+
i
)
)
)
,
{\displaystyle {\begin{aligned}\sigma _{1}(n)&=\sigma _{1}(n-1)+\sigma _{1}(n-2)-\sigma _{1}(n-5)-\sigma _{1}(n-7)+\sigma _{1}(n-12)+\sigma _{1}(n-15)+\cdots \\[12mu]&=\sum _{i\in \mathbb {N} }(-1)^{i+1}\left(\sigma _{1}\left(n-{\frac {1}{2}}\left(3i^{2}-i\right)\right)+\sigma _{1}\left(n-{\frac {1}{2}}\left(3i^{2}+i\right)\right)\right),\end{aligned}}}
where
σ
1
(
0
)
=
n
{\displaystyle \sigma _{1}(0)=n}
if it occurs and
σ
1
(
x
)
=
0
{\displaystyle \sigma _{1}(x)=0}
for
x
<
0
{\displaystyle x<0}
, and
1
2
(
3
i
2
∓
i
)
{\displaystyle {\tfrac {1}{2}}\left(3i^{2}\mp i\right)}
are consecutive pairs of generalized pentagonal numbers (OEIS : A001318 , starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his pentagonal number theorem .
For a non-square integer, n , every divisor, d , of n is paired with divisor n /d of n and
σ
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is even; for a square integer, one divisor (namely
n
{\displaystyle {\sqrt {n}}}
) is not paired with a distinct divisor and
σ
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is odd. Similarly, the number
σ
1
(
n
)
{\displaystyle \sigma _{1}(n)}
is odd if and only if n is a square or twice a square.
We also note s (n ) = σ (n ) − n . Here s (n ) denotes the sum of the proper divisors of n , that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers , which are the n such that s (n ) = n . If s (n ) > n , then n is an abundant number , and if s (n ) < n , then n is a deficient number .
If n is a power of 2,
n
=
2
k
{\displaystyle n=2^{k}}
, then
σ
(
n
)
=
2
⋅
2
k
−
1
=
2
n
−
1
{\displaystyle \sigma (n)=2\cdot 2^{k}-1=2n-1}
and
s
(
n
)
=
n
−
1
{\displaystyle s(n)=n-1}
, which makes n almost-perfect .
As an example, for two primes
p
,
q
:
p
<
q
{\displaystyle p,q:p<q}
, let
n
=
p
q
{\displaystyle n=p\,q}
.
Then
σ
(
n
)
=
(
p
+
1
)
(
q
+
1
)
=
n
+
1
+
(
p
+
q
)
,
{\displaystyle \sigma (n)=(p+1)(q+1)=n+1+(p+q),}
φ
(
n
)
=
(
p
−
1
)
(
q
−
1
)
=
n
+
1
−
(
p
+
q
)
,
{\displaystyle \varphi (n)=(p-1)(q-1)=n+1-(p+q),}
and
n
+
1
=
(
σ
(
n
)
+
φ
(
n
)
)
/
2
,
{\displaystyle n+1=(\sigma (n)+\varphi (n))/2,}
p
+
q
=
(
σ
(
n
)
−
φ
(
n
)
)
/
2
,
{\displaystyle p+q=(\sigma (n)-\varphi (n))/2,}
where
φ
(
n
)
{\displaystyle \varphi (n)}
is Euler's totient function .
Then, the roots of
(
x
−
p
)
(
x
−
q
)
=
x
2
−
(
p
+
q
)
x
+
n
=
x
2
−
[
(
σ
(
n
)
−
φ
(
n
)
)
/
2
]
x
+
[
(
σ
(
n
)
+
φ
(
n
)
)
/
2
−
1
]
=
0
{\displaystyle (x-p)(x-q)=x^{2}-(p+q)x+n=x^{2}-[(\sigma (n)-\varphi (n))/2]x+[(\sigma (n)+\varphi (n))/2-1]=0}
express p and q in terms of σ (n ) and φ (n ) only, requiring no knowledge of n or
p
+
q
{\displaystyle p+q}
, as
p
=
(
σ
(
n
)
−
φ
(
n
)
)
/
4
−
[
(
σ
(
n
)
−
φ
(
n
)
)
/
4
]
2
−
[
(
σ
(
n
)
+
φ
(
n
)
)
/
2
−
1
]
,
{\displaystyle p=(\sigma (n)-\varphi (n))/4-{\sqrt {[(\sigma (n)-\varphi (n))/4]^{2}-[(\sigma (n)+\varphi (n))/2-1]}},}
q
=
(
σ
(
n
)
−
φ
(
n
)
)
/
4
+
[
(
σ
(
n
)
−
φ
(
n
)
)
/
4
]
2
−
[
(
σ
(
n
)
+
φ
(
n
)
)
/
2
−
1
]
.
{\displaystyle q=(\sigma (n)-\varphi (n))/4+{\sqrt {[(\sigma (n)-\varphi (n))/4]^{2}-[(\sigma (n)+\varphi (n))/2-1]}}.}
Also, knowing n and either
σ
(
n
)
{\displaystyle \sigma (n)}
or
φ
(
n
)
{\displaystyle \varphi (n)}
, or, alternatively,
p
+
q
{\displaystyle p+q}
and either
σ
(
n
)
{\displaystyle \sigma (n)}
or
φ
(
n
)
{\displaystyle \varphi (n)}
allows an easy recovery of p and q .
In 1984, Roger Heath-Brown proved that the equality
σ
0
(
n
)
=
σ
0
(
n
+
1
)
{\displaystyle \sigma _{0}(n)=\sigma _{0}(n+1)}
is true for infinitely many values of n , see OEIS : A005237 .
Two Dirichlet series involving the divisor function are:
∑
n
=
1
∞
σ
a
(
n
)
n
s
=
ζ
(
s
)
ζ
(
s
−
a
)
for
s
>
1
,
s
>
a
+
1
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)}{n^{s}}}=\zeta (s)\zeta (s-a)\quad {\text{for}}\quad s>1,s>a+1,}
where
ζ
{\displaystyle \zeta }
is the Riemann zeta function . The series for d (n ) = σ 0 (n ) gives:
∑
n
=
1
∞
d
(
n
)
n
s
=
ζ
2
(
s
)
for
s
>
1
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {d(n)}{n^{s}}}=\zeta ^{2}(s)\quad {\text{for}}\quad s>1,}
and a Ramanujan identity
∑
n
=
1
∞
σ
a
(
n
)
σ
b
(
n
)
n
s
=
ζ
(
s
)
ζ
(
s
−
a
)
ζ
(
s
−
b
)
ζ
(
s
−
a
−
b
)
ζ
(
2
s
−
a
−
b
)
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)\sigma _{b}(n)}{n^{s}}}={\frac {\zeta (s)\zeta (s-a)\zeta (s-b)\zeta (s-a-b)}{\zeta (2s-a-b)}},}
which is a special case of the Rankin–Selberg convolution .
A Lambert series involving the divisor function is:
∑
n
=
1
∞
q
n
σ
a
(
n
)
=
∑
n
=
1
∞
∑
j
=
1
∞
n
a
q
j
n
=
∑
n
=
1
∞
n
a
q
n
1
−
q
n
{\displaystyle \sum _{n=1}^{\infty }q^{n}\sigma _{a}(n)=\sum _{n=1}^{\infty }\sum _{j=1}^{\infty }n^{a}q^{j\,n}=\sum _{n=1}^{\infty }{\frac {n^{a}q^{n}}{1-q^{n}}}}
for arbitrary complex |q | ≤ 1 and a . This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions .
For
k
>
0
{\displaystyle k>0}
, there is an explicit series representation with Ramanujan sums
c
m
(
n
)
{\displaystyle c_{m}(n)}
as :[13]
σ
k
(
n
)
=
ζ
(
k
+
1
)
n
k
∑
m
=
1
∞
c
m
(
n
)
m
k
+
1
.
{\displaystyle \sigma _{k}(n)=\zeta (k+1)n^{k}\sum _{m=1}^{\infty }{\frac {c_{m}(n)}{m^{k+1}}}.}
The computation of the first terms of
c
m
(
n
)
{\displaystyle c_{m}(n)}
shows its oscillations around the "average value"
ζ
(
k
+
1
)
n
k
{\displaystyle \zeta (k+1)n^{k}}
:
σ
k
(
n
)
=
ζ
(
k
+
1
)
n
k
[
1
+
(
−
1
)
n
2
k
+
1
+
2
cos
2
π
n
3
3
k
+
1
+
2
cos
π
n
2
4
k
+
1
+
⋯
]
{\displaystyle \sigma _{k}(n)=\zeta (k+1)n^{k}\left[1+{\frac {(-1)^{n}}{2^{k+1}}}+{\frac {2\cos {\frac {2\pi n}{3}}}{3^{k+1}}}+{\frac {2\cos {\frac {\pi n}{2}}}{4^{k+1}}}+\cdots \right]}
In little-o notation , the divisor function satisfies the inequality:
for all
ε
>
0
,
d
(
n
)
=
o
(
n
ε
)
.
{\displaystyle {\mbox{for all }}\varepsilon >0,\quad d(n)=o(n^{\varepsilon }).}
More precisely, Severin Wigert showed that:
lim sup
n
→
∞
log
d
(
n
)
log
n
/
log
log
n
=
log
2.
{\displaystyle \limsup _{n\to \infty }{\frac {\log d(n)}{\log n/\log \log n}}=\log 2.}
On the other hand, since there are infinitely many prime numbers ,
lim inf
n
→
∞
d
(
n
)
=
2.
{\displaystyle \liminf _{n\to \infty }d(n)=2.}
In Big-O notation , Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality:
for all
x
≥
1
,
∑
n
≤
x
d
(
n
)
=
x
log
x
+
(
2
γ
−
1
)
x
+
O
(
x
)
,
{\displaystyle {\mbox{for all }}x\geq 1,\sum _{n\leq x}d(n)=x\log x+(2\gamma -1)x+O({\sqrt {x}}),}
where
γ
{\displaystyle \gamma }
is Euler's gamma constant . Improving the bound
O
(
x
)
{\displaystyle O({\sqrt {x}})}
in this formula is known as Dirichlet's divisor problem .
The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by:
lim sup
n
→
∞
σ
(
n
)
n
log
log
n
=
e
γ
,
{\displaystyle \limsup _{n\rightarrow \infty }{\frac {\sigma (n)}{n\,\log \log n}}=e^{\gamma },}
where lim sup is the limit superior . This result is Grönwall 's theorem , published in 1913 ( Grönwall 1913 ) . His proof uses Mertens' third theorem , which says that:
lim
n
→
∞
1
log
n
∏
p
≤
n
p
p
−
1
=
e
γ
,
{\displaystyle \lim _{n\to \infty }{\frac {1}{\log n}}\prod _{p\leq n}{\frac {p}{p-1}}=e^{\gamma },}
where p denotes a prime.
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis , Robin's inequality
σ
(
n
)
<
e
γ
n
log
log
n
{\displaystyle \ \sigma (n)<e^{\gamma }n\log \log n}
(where γ is the Euler–Mascheroni constant )
holds for all sufficiently large n ( Ramanujan 1997 ) . The largest known value that violates the inequality is n =5040 . In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true ( Robin 1984 ) . This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant ( Akbary & Friggstad 2009 ) . It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime ( Choie et al. 2007 ) .
Robin also proved, unconditionally, that the inequality:
σ
(
n
)
<
e
γ
n
log
log
n
+
0.6483
n
log
log
n
{\displaystyle \ \sigma (n)<e^{\gamma }n\log \log n+{\frac {0.6483\ n}{\log \log n}}}
holds for all n ≥ 3.
A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
σ
(
n
)
<
H
n
+
e
H
n
log
(
H
n
)
{\displaystyle \sigma (n)<H_{n}+e^{H_{n}}\log(H_{n})}
for every natural number n > 1, where
H
n
{\displaystyle H_{n}}
is the n th harmonic number , ( Lagarias 2002 ) .
Ramanujan, S. (1915), "Highly Composite Numbers" , Proceedings of the London Mathematical Society , s2-14 (1): 347–409, doi :10.1112/plms/s2_14.1.347 ; see section 47, pp. 405–406, reproduced in Collected Papers of Srinivasa Ramanujan , Cambridge Univ. Press, 2015, pp. 124–125
Euler, Leonhard; Bell, Jordan (2004). "An observation on the sums of divisors". arXiv :math/0411587 .
E. Krätzel (1981). Zahlentheorie . Berlin: VEB Deutscher Verlag der Wissenschaften. p. 130. (German)
Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (PDF) , American Mathematical Monthly , 116 (3): 273–275, doi :10.4169/193009709X470128 , archived from the original (PDF) on 2014-04-11 .
Apostol, Tom M. (1976), Introduction to analytic number theory , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3 , MR 0434929 , Zbl 0335.10001
Bach, Eric ; Shallit, Jeffrey , Algorithmic Number Theory , volume 1, 1996, MIT Press. ISBN 0-262-02405-5 , see page 234 in section 8.8.
Caveney, Geoffrey; Nicolas, Jean-Louis ; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (PDF) , INTEGERS: The Electronic Journal of Combinatorial Number Theory , 11 : A33, arXiv :1110.5078 , Bibcode :2011arXiv1110.5078C
Choie, YoungJu ; Lichiardopol, Nicolas; Moree, Pieter ; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis", Journal de théorie des nombres de Bordeaux , 19 (2): 357–372, arXiv :math.NT/0604314 , doi :10.5802/jtnb.591 , ISSN 1246-7405 , MR 2394891 , S2CID 3207238 , Zbl 1163.11059
Gioia, A. A.; Vaidya, A. M. (1967), "Amicable numbers with opposite parity", The American Mathematical Monthly , 74 (8): 969–973, doi :10.2307/2315280 , JSTOR 2315280 , MR 0220659
Grönwall, Thomas Hakon (1913), "Some asymptotic expressions in the theory of numbers", Transactions of the American Mathematical Society , 14 : 113–122, doi :10.1090/S0002-9947-1913-1500940-6
Hardy, G. H. ; Wright, E. M. (2008) [1938], An Introduction to the Theory of Numbers , Revised by D. R. Heath-Brown and J. H. Silverman . Foreword by Andrew Wiles . (6th ed.), Oxford: Oxford University Press , ISBN 978-0-19-921986-5 , MR 2445243 , Zbl 1159.11001
Ivić, Aleksandar (1985), The Riemann zeta-function. The theory of the Riemann zeta-function with applications , A Wiley-Interscience Publication, New York etc.: John Wiley & Sons, pp. 385–440, ISBN 0-471-80634-X , Zbl 0556.10026
Lagarias, Jeffrey C. (2002), "An elementary problem equivalent to the Riemann hypothesis", The American Mathematical Monthly , 109 (6): 534–543, arXiv :math/0008177 , doi :10.2307/2695443 , ISSN 0002-9890 , JSTOR 2695443 , MR 1908008 , S2CID 15884740
Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company , LCCN 77171950
Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory , Englewood Cliffs: Prentice Hall , LCCN 77081766
Ramanujan, Srinivasa (1997), "Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin", The Ramanujan Journal , 1 (2): 119–153, doi :10.1023/A:1009764017495 , ISSN 1382-4090 , MR 1606180 , S2CID 115619659
Robin, Guy (1984), "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées , Neuvième Série, 63 (2): 187–213, ISSN 0021-7824 , MR 0774171
Williams, Kenneth S. (2011), Number theory in the spirit of Liouville , London Mathematical Society Student Texts, vol. 76, Cambridge: Cambridge University Press , ISBN 978-0-521-17562-3 , Zbl 1227.11002