Specifies a range of position-dependent colors From Wikipedia, the free encyclopedia
In color science, a color gradient (also known as a color ramp or a color progression) specifies a range of position-dependent colors, usually used to fill a region.
In assigning colors to a set of values, a gradient is a continuous colormap, a type of color scheme.
In computer graphics, the term swatch[1] has come to mean a palette of active colors.
An axial color gradient (sometimes also called a linear color gradient) is specified by two points, and a color at each point. The colors along the line through those points are calculated using linear interpolation, then extended perpendicular to that line. In digital imaging systems, colors are typically interpolated in an RGB color space, often using gamma compressed RGB color values, as opposed to linear. CSS and SVG both support linear gradients.[8][9]
Radial gradients
A radial gradient is specified as a circle that has one color at the edge and another at the center. Colors are calculated by linear interpolation based on distance from the center. This can be used to approximate the diffuse reflection of light from a point source by a sphere.[citation needed] Both CSS and SVG support radial gradients.[10][11]
Conic gradients
Conic or conical gradients are gradients with color transitions rotated around a center point (rather than radiating from the center). Example conic gradients include pie charts and color wheels.[12] Conic gradients are sometimes called "sweep gradients" (for example in the OpenType specification) or angular gradients.
The appearance of a gradient not only varies by the color themselves, but also by the color space the calculation is performed in. The problem usually becomes important for two reasons:
Gamma correction to a color space. With a typical γ of around 2, it is easy to see that a gamma-enabled color space will blend darker than a linear-intensity color space, since the sum of squares of two numbers is never more than the square of their sum. The effect is most apparent in blending complementary colors like red and green, with the middle color being a dark color instead of the expected yellow.[13][14] The radial and conic examples on this page clearly exhibit this error.
Handling of other perceptual properties. In information visualization, it is undesirable to have a supposedly "flat" gradient show non-monotonic variations in lightness and saturation along the way. This is because human vision emphasizes these qualities, causing bias or confusion in interpretation.[15]
A "linear" blend would match physical light blending and has been the standard in game engines for a long time.[16] On the web, however, it has long been neglected for both color gradients and image scaling.[17] Such a blend still has a subtle difference from one done in a perceptually-uniform color space.[18]
fill a region:[20] many window managers allow the screen background to be specified as a gradient. The colors produced by a gradient vary continuously with position, producing smooth color transitions.
visualize the progression of an extended computer operation, such as a download, file transfer, or installation. See progress bar
A survey and task-based quality assessment of static 2D colormaps Author(s): Bernard, Jürgen; Steiger, Martin; Mittelstädt, Sebastian; Thum, Simon; Keim, Daniel; Kohlhammer, Jörn, In Kao, David L. (Ed.); Society for Imaging Science and Technology -IS&T-; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.: Visualization and Data Analysis 2015: 9–11 February 2015, San Francisco, California Bellingham, WA: SPIE, 2015 (Proceedings of SPIE 9397) ISBN9781628414875