Loading AI tools
Attribute of a geometric shape From Wikipedia, the free encyclopedia
The aspect ratio of a geometric shape is the ratio of its sizes in different dimensions. For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height,[1][2] when the rectangle is oriented as a "landscape".
This article needs additional citations for verification. (June 2023) |
The aspect ratio is most often expressed as two integer numbers separated by a colon (x:y), less commonly as a simple or decimal fraction. The values x and y do not represent actual widths and heights but, rather, the proportion between width and height. As an example, 8:5, 16:10, 1.6:1, 8⁄5 and 1.6 are all ways of representing the same aspect ratio.
In objects of more than two dimensions, such as hyperrectangles, the aspect ratio can still be defined as the ratio of the longest side to the shortest side.
The term is most commonly used with reference to:
For a rectangle, the aspect ratio denotes the ratio of the width to the height of the rectangle. A square has the smallest possible aspect ratio of 1:1.
Examples:
For an ellipse, the aspect ratio denotes the ratio of the major axis to the minor axis. An ellipse with an aspect ratio of 1:1 is a circle.
In geometry, there are several alternative definitions to aspect ratios of general compact sets in a d-dimensional space:[3]
If the dimension d is fixed, then all reasonable definitions of aspect ratio are equivalent to within constant factors.
Aspect ratios are mathematically expressed as x:y (pronounced "x-to-y").
Cinematographic aspect ratios are usually denoted as a (rounded) decimal multiple of width vs unit height, while photographic and videographic aspect ratios are usually defined and denoted by whole number ratios of width to height. In digital images there is a subtle distinction between the display aspect ratio (the image as displayed) and the storage aspect ratio (the ratio of pixel dimensions); see Distinctions.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.