Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism.[1] In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa.[2]
Androdioecy, trioecy and gynodioecy are sometimes referred to as a mixed mating systems.[3] Androdioecy is a dimorphic sexual system in plants comparable with gynodioecy and dioecy.[4]
The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist.[5][6] Particularly, males and hermaphrodites have to have the same fitness, in other words produce the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction.[7][8]
Androdioecy can evolve either from hermaphroditic ancestors through the invasion of males or from dioecious ancestors through the invasion of hermaphrodites. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.[citation needed]
Androdioecy with dioecious ancestry
In roundworms, clam shrimp, tadpole shrimp and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals.[9]
In the well-studied roundworm Caenorhabditis elegans, males are very rare and only occur in populations that are in bad condition or stressed.[10] In Caenorhabditis elegans androdioecy is thought to have evolved from dioecy, through a trioecous intermediate.[11]
Androdioecy with hermaphroditic ancestry
In barnacles, androdioecy evolved from hermaphroditism.[3] Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.[citation needed]
The most common form of androdioecy in animals involves hermaphrodites that can reproduce by autogamy or allogamy through ovum with males. However, this type does not involve outcrossing with sperm. This type of androdioecy generally occurs in predominantly gonochoric taxonomy groups.[12]: 21
One type of androdioecy contains outcrossing hermaphrodites which is present in some angiosperms.[12]: 21
Another type of androdioecy has males and simultaneous hermaphrodites in a population due to developmental or conditional sex allocation. Like in some fish species small individuals are hermaphrodites and under circumstances of high density, large individuals become male.[12]: 21
Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known.[2][13] These species include
Clam shrimp
- Eulimnadia texana[22]
- Eulimnadia africana
- Eulimnadia agassizii
- Eulimnadia antlei
- Eulimnadia braueriana
- Eulimnadia brasiliensis
- Eulimnadia colombiensis
- Eulimnadia cylondrova
- Eulimnadia dahli
- Eulimnadia diversa
- Eulimnadia feriensis
- Eulimnadia follisimilis
- Eulimnadia thompsoni
- Eulimnadia sp. A
- Eulimnadia sp. B
- Eulimnadia sp. C
Tadpole shrimp
Barnacles
- Paralepas klepalae
- Paralepas xenophorae
- Koleolepas avis
- Koleolepas tinkeri
- Ibla quadrivalvis
- Ibla cumingii
- Ibla idiotica
- Ibla segmentata
- Calantica studeri
- Calantica siemensi
- Calantica spinosa
- Calantica villosa
- Arcoscalpellum sp.
- Euscalpellum squamuliferum
- Scalpellum peronii
- Scalpellum scalpellum
- Scalpellum vulgare
- Scillaelepas arnaudi
- Scillaelepas bocquetae
- Scillaelepas calyculacilla
- Scillaelepas falcate
- Scillaelepas fosteri
- Smilium hastatum
- Smilium peronii
- Chelonibia patula[24]
- Chelonibia testudinaria[25]
- Bathylasma alearum[26]
- Bathylasma corolliforme
- Conopea galeata[27]
- Conopea calceola[27]
- Conopea merrilli[27]
- Solidobalanus masignotus[28]
- Tetrapachylasma trigonum
- Megalasma striatum
- Octolasmis warwickii[29]
Lysmata
Insects
- Salvatoria clavata
- Ophryotrocha gracilis
- Ophryotrocha hartmanni
- Ophryotrocha diadema
- Ophryotrocha bacci
- Ophryotrocha maculata
- Ophryotrocha socialis
Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton.
Charlesworth, B; Charlesworth, D (1978). "A Model for the Evolution of Dioecy and Gynodioecy". The American Naturalist. 112 (988): 975–997. doi:10.1086/283342. S2CID 83907227.
Pannell, J (2000). "A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation". Evolutionary Ecology. 14 (3): 195–211. doi:10.1023/A:1011082827809. S2CID 38050756.
Fürst von Lieven A (2008). "Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components". Nematology. 10 (1): 27–45. doi:10.1163/156854108783360087.
Kiontke K, Manegold A, Sudhaus W (2001). "Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera)". Nematology. 3 (8): 817–832. doi:10.1163/156854101753625317.
Ragsdale EJ, Kanzaki N, Sommer RJ (2014). "Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA". Nematology. 16 (6): 695–709. doi:10.1163/15685411-00002798. S2CID 17802237.
Potts FA (1908). "Sexual phenomena in the free-living nematodes". Proceedings of the Cambridge Philosophical Society. 14: 373–375.
Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ (2013). "Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism". Zoological Journal of the Linnean Society. 168 (4): 671–698. doi:10.1111/zoj.12041. S2CID 4484091.
Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ (2013). "Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development". Nematology. 15 (8): 1001–1020. doi:10.1163/15685411-00002738. S2CID 4505014.
Vicky G. Hollenbeck; Stephen C. Weeks; William R. Gould; Naida Zucker (2002). "Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: sexual encounter rates and outcrossing success". Behavioral Ecology. 13 (4): 561–570. doi:10.1093/beheco/13.4.561.
Crisp, DJ (1983). "Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male". Marine Biology Letters. 4: 281–294.
McLaughlin, PA; Henry, DP (1972). "Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica)". Crustaceana. 22 (1): 13–30. doi:10.1163/156854072x00642.
Henry, DP; McLaughlin, PA (1967). "A Revision of the Subgenus Solidobalanus Hoek (Cirripedia Thoracica) including a Description of a New Species with Complemental Males". Crustaceana. 12 (1): 43–58. doi:10.1163/156854067x00693.
Yusa, Y; Takemura, M; Miyazaki, K; Watanabe, T; Yamato, S (2010). "Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha". The Biological Bulletin. 218 (3): 259–265. doi:10.1086/bblv218n3p259. PMID 20570849. S2CID 23908199.
Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
Valiente-Banuet, A; Rojas-Martínez, A; Del Coro, Arizmendi M; Dávila, P (1997). "Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico". American Journal of Botany. 84 (4): 452–455. doi:10.2307/2446020. JSTOR 2446020.
Thomson JD, Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059