Loading AI tools
Chemical compound From Wikipedia, the free encyclopedia
Allyl chloride is the organic compound with the formula CH2=CHCH2Cl. This colorless liquid is insoluble in water but soluble in common organic solvents. It is mainly converted to epichlorohydrin, used in the production of plastics. It is a chlorinated derivative of propylene. It is an alkylating agent, which makes it both useful and hazardous to handle.[4]
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
3-Chloroprop-1-ene | |||
Other names | |||
Identifiers | |||
3D model (JSmol) |
|||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.003.144 | ||
EC Number |
| ||
KEGG | |||
PubChem CID |
|||
RTECS number |
| ||
UNII | |||
UN number | 1100 | ||
CompTox Dashboard (EPA) |
|||
| |||
| |||
Properties | |||
C3H5Cl | |||
Molar mass | 76.52 g·mol−1 | ||
Appearance | Colorless, brown, yellow, or purple liquid[1] | ||
Odor | pungent, unpleasant[1] | ||
Density | 0.94 g/mL | ||
Melting point | −135 °C (−211 °F; 138 K) | ||
Boiling point | 45 °C (113 °F; 318 K) | ||
0.36 g/100 ml (20 °C) | |||
Solubility | soluble in ether, acetone, benzene, chloroform | ||
Vapor pressure | 295 mmHg[1] | ||
Refractive index (nD) |
1.4055 | ||
Viscosity | 0.3130 mPa·s[2] | ||
Hazards | |||
GHS labelling: | |||
Danger | |||
H225, H302, H312, H315, H319, H332, H335, H341, H351, H373, H400 | |||
P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P273, P280, P281, P301+P312, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P308+P313, P312, P314, P321, P322, P330, P332+P313, P337+P313, P362, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501 | |||
NFPA 704 (fire diamond) | |||
Flash point | −32 °C (−26 °F; 241 K) | ||
390 °C (734 °F; 663 K) | |||
Explosive limits | 2.9–11.2% | ||
Lethal dose or concentration (LD, LC): | |||
LC50 (median concentration) |
11000 mg/m3 (rat, 2 hr) 11500 mg/m3 (mouse, 2 hr) 5800 mg/m3 (guinea pig, 2 hr) 22500 mg/m3 (rabbit, 2 hr) 10500 mg/m3 (cat, 2 hr)[3] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) |
TWA 1 ppm (3 mg/m3)[1] | ||
REL (Recommended) |
TWA 1 ppm (3 mg/m3) ST 2 ppm (6 mg/m3)[1] | ||
IDLH (Immediate danger) |
250 ppm[1] | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Allyl chloride was first produced in 1857 by Auguste Cahours and August Hofmann by reacting allyl alcohol with phosphorus trichloride.[5][4] Modern preparation protocols economize this approach, replacing relatively expensive phosphorus trichloride with hydrochloric acid and a catalyst such as copper(I) chloride.[6]
Allyl chloride is produced by the chlorination of propylene. At lower temperatures, the main product is 1,2-dichloropropane, but at 500 °C, allyl chloride predominates, being formed via a free radical reaction:
An estimated 800,000 tonnes were produced this way in 1997.[4]
The great majority of allyl chloride is converted to epichlorohydrin.[4] Other commercially significant derivatives include allyl alcohol, allylamine, allyl isothiocyanate (synthetic mustard oil),[7] and 1-bromo-3-chloropropane.
As an alkylating agent, it is useful in the manufacture of pharmaceuticals and pesticides, such as mustard oil.
Illustrative of its reactivity is its cyanation to allyl cyanide (CH2=CHCH2CN).[8] Being a reactive alkyl halide, it undergoes reductive coupling to give diallyl:[9]
It undergoes oxidative addition to palladium(0) to give allylpalladium chloride dimer, (C3H5)2Pd2Cl2. Dehydrohalogenation gives cyclopropene.
Allyl chloride is highly toxic and flammable. Eye effects may be delayed and may lead to possible impairment of vision.[10]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.