Remove ads
Axial-flow compressor jet engine From Wikipedia, the free encyclopedia
The General Electric/Allison J35 was the United States Air Force's first axial-flow (straight-through airflow) compressor jet engine. Originally developed by General Electric (GE company designation TG-180) in parallel with the Whittle-based centrifugal-flow J33, the J35 was a fairly simple turbojet, consisting of an eleven-stage axial-flow compressor and a single-stage turbine. With the afterburner, which most models carried, it produced a thrust of 7,400 lbf (33 kN).
J35 | |
---|---|
An Allison J35 at Aalborg, Denmark | |
Type | Turbojet |
National origin | United States |
Manufacturer | General Electric Allison Engine Company |
First run | 1946 |
Major applications | North American FJ-1 Fury Northrop F-89 Scorpion Northrop YB-49 Republic F-84 Thunderjet |
Number built | 14,000 |
Developed into | Allison J71 General Electric J47 |
Like the J33, the design of the J35 originated at General Electric, but major production was by the Allison Engine Company.
While developing the T31 axial turboprop in 1943 General Electric realized that they had the resources to design an axial flow turbojet at the same time as their centrifugal-flow J33 engine. They recognized the axial would have more potential for the future and went ahead with the TG-180 engine.[1] GE axial compressor designs were developed from the NACA 8-stage compressor.[2]
The engine had its starter and accessories (fuel control, fuel pump, oil pumps, hydraulic pump, RPM generator)[3] mounted in the center of the compressor inlet. This accessory layout, as used on centrifugal engines, restricted the area available for compressor inlet air. It was carried over to the J47 but revised (relocated to an external gearbox) on the J73 when a 50% increase in airflow was required.[4] It also had an inlet debris guard which was common on early jet engines.
GE developed a variable afterburner for the engine, although electronic control linked with engine controls had to wait until the J47.[5] Marrett describes one of the potential consequences of manual control of the engine and afterburner on a turbine engine: if the afterburner lit but the pilot failed to ensure the nozzle opened, the RPM governor could overfuel the engine until the turbine failed.[6]
The General Electric J35 first flew in the Republic XP-84 Thunderjet in 1946. Late in 1947, complete responsibility for the development and production of the engine was transferred to the Allison Division of the General Motors Corporation and some J35s were also built by GM's Chevrolet division. More than 14,000 J35s had been built by the time production ended in 1955.
The J35 was used to power the Bell X-5 variable-sweep research aircraft and various prototypes such as the Douglas XB-43 Jetmaster, North American XB-45 Tornado, Convair XB-46, Boeing XB-47 Stratojet, Martin XB-48, and Northrop YB-49. It is probably best known, however, as the engine used in two of the leading fighters of the United States Air Force (USAF) in the 1950s: the Republic F-84 Thunderjet and the Northrop F-89 Scorpion.
A largely redesigned development, the J35-A-23, was later produced as the Allison J71, developing 10,900 lbf (48.49 kN) thrust.
Data from: Aircraft Engines of the World 1953,[7] Aircraft Engines of the World 1950[8]
Data from ,[9] Aircraft engines of the World 1957[10]
Related development
Comparable engines
Related lists
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.