From Wikipedia, the free encyclopedia
Το επίπεδο θεωρείται συνήθως αρχική έννοια της γεωμετρίας, δηλαδή δεν ορίζεται με βάση άλλες στοιχειωδέστερες έννοιες, αν και σε κάποιες προσεγγίσεις της γεωμετρίας δεν είναι έτσι, όπως για παράδειγμα στην αναλυτική γεωμετρία όπου ορίζεται με βάση την έννοια του σημείου. Ιδιαίτερα όταν εργαζόμαστε στη δισδιάστατη ευκλείδεια γεωμετρία το επίπεδο αναφέρεται σε ολόκληρο το χώρο.
Διαισθητικά η έννοια του επιπέδου μπορεί να περιγραφεί ως μια εντελώς ίσια (δηλ. χωρίς κυρτότητα ή κοιλότητα) και λεία (δηλ. χωρίς «βουνά» ή «κοιλάδες») επιφάνεια που έχει μηδενικό όγκο και καταλαμβάνει τις δύο μόνο διαστάσεις του τρισδιάστατου χώρου. Επεκτείνεται απεριόριστα προς τις δύο διευθύνσεις. Δύο παράλληλα επίπεδα έχουν την ιδιότητα ότι ποτέ δεν τέμνονται, όσο και αν τα επεκτείνουμε. Επιπλέον, δύο επίπεδα μπορούν να εφαρμόσουν ακριβώς, ακόμα και όταν το ένα κινείται κατά την έκταση του άλλου.[1]
Μακροσκοπικές επιφάνειες ή αντικείμενα που συνήθως μοντελοποιούνται ή νοούνται ως επίπεδες επιφάνειες είναι οι τοίχοι, οι οροφές και τα πατώματα ενός απλού σπιτιού, η πάνω επιφάνεια ενός τραπεζιού, ο πίνακας μίας σχολικής αίθουσας.
Σχεδόν σε κάθε γεωμετρία ισχύουν τα εξής που αφορούν το επίπεδο:
Σε τρισδιάστατο ορθοκανονικό σύστημα αναφοράς ένα επίπεδο μπορεί να θεωρηθεί ως ο γεωμετρικός χώρος που αντιστοιχεί σε αυτήν τη συνθήκη:
Όπου Ρ το εφαρμοστό διάνυσμα θέσης τυχαίου σημείου του χώρου, Π το εφαρμοστό διάνυσμα θέσης ενός σημείου του χώρου και δ ένα διάνυσμα που λέγεται κάθετο διάνυσμα του επιπέδου. Οι αρχές των εφαρμοστών διανυσμάτων είναι η αρχή των αξόνων.
Το διάνυσμα Ρ-Π είναι ένα διάνυσμα του οποίου και τα δύο σημεία ανήκουν στο οριζόμενο επίπεδο, άρα ανήκει εξολοκλήρου στο επίπεδο. Από τη σχέση προκύπτει ότι αυτό το διάνυσμα και το δ είναι κάθετα μεταξύ τους, άρα το δ δίνει στο επίπεδο έναν συγκεκριμένο προσανατολισμό. Ο προσδιορισμός του επιπέδου ολοκληρώνεται με το εφαρμοστό διάνυσμα Π, το οποίο τοποθετεί το ελεύθερο επίπεδο σε συγκεκριμένη θέση. Το Π ανήκει στο επίπεδο, αφού
Το επίπεδο είναι η λύση γραμμικών εξισώσεων της μορφής αχ+βψ+γω=0, όπου α, β, γ παράμετροι τέτοιες, ώστε |α|+|β|+|γ|0, δηλαδή να μην είναι όλες μηδέν. Αν σε μία εξίσωση αυτής της μορφής είναι α=β=γ=0, τότε η λύση του συστήματος είναι όλος ο τρισδιάστατος χώρος.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.