Loading AI tools
geschlossene Kurve, bei der alle Sehnen, die die Kurvenlänge halbieren, gleich lang sind Aus Wikipedia, der freien Enzyklopädie
Eine Zindlerkurve ist eine geschlossene doppelpunktfreie Kurve in der Ebene mit der Eigenschaft, dass
Das einfachste Beispiel für eine Zindlerkurve ist ein Kreis. Konrad Zindler entdeckte 1921, dass es weitere solche Kurven gibt, und beschrieb ein Konstruktionsverfahren. Herman Auerbach war 1938 der Erste, der den Namen Zindlerkurven (courbes de Zindler) benutzte.
Eine äquivalente charakterisierende Eigenschaft der Zindlerkurven ist, dass
Beispiele:[1]
Jede der von dem Scharparameter abhängigen Kurven (der Einfachheit halber in der komplexen Ebene beschrieben)
ist für eine Zindlerkurve.
Für ist die Kurve sogar konvex.
In der Zeichnung sind die Kurven für (blau), (grün) und (rot) zu sehen.
Ab ist die Kurve von einem Gleichdick ableitbar.
Nachweis der Eigenschaft (L): Aus der Ableitung
Damit ist eine -periodische Funktion und es gilt für jedes die Gleichung
Letzteres ist damit auch die halbe Länge der Kurve. Die Sehnen, die die Kurvenlänge halbieren, lassen sich also durch Kurvenpunkte mit beschreiben. Für die Länge solch einer Sehne ergibt sich
und diese ist damit unabhängig von .
Für gibt es unter den hier beschriebenen Sehnen welche, die mit der Kurve einen dritten Punkt gemeinsam haben (s. Bild). Also können nur die Kurven der Beispielschar mit Zindlerkurven sein. (Der Beweis, dass für die verwendeten Sehnen keine weiteren Punkte mit der Kurve gemeinsam haben, wurde hier nicht geführt.)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.