Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Die Wightman-Axiome, oder auch Gårding–Wightman-Axiome, sind ein von Arthur Wightman und Lars Gårding in den 1950er[1] Jahren formuliertes Axiomensystem zur mathematischen (axiomatische) Beschreibung von Quantenfeldtheorien. Publiziert wurden die Axiome im Jahre 1964,[2] nachdem der Erfolg der Haag-Ruelle Streutheorie[3][4] deren Bedeutung aufzeigte.
Im Folgenden werden die Wightman-Axiome für ein hermitesches skalares Quantenfeld beschrieben. Die Nummerierung der Axiome basiert auf der von Arthur Wightman und Ray Streater verfassten Monografie "PCT, Spin, Statistik und all das".[5]
Sei nun und wie oben beschrieben. Für alle gilt, dass Des Weiteren fordert man, dass das Quantenfeld für alle , für alle und für alle die folgende Transformationseigenschaft besitzt:
wobei .
Ein Quintupel , das die obigen Axiome erfüllt, wird als „hermitesche skalare Wightman-Quantenfeldtheorie“ bezeichnet.
Das Quantenfeld wird in den Axiomen als "operatorwertige temperierte Distribution" definiert, wohingegen in der Physik Quantenfelder meist als operatorwertige Funktionen auf der Raumzeit beschrieben werden. Hierzu schrieb Arthur Wightman und Ray Streater in "PCT, Spin, Statistik und all das":[5]
Übersetzung:
Die Wightman-Axiome lassen sich auch auf Felder mit Spin ungleich von 0 verallgemeinern. Hierzu fordert man, dass die Theorie ein -Tupel an operatorwertigen temperierten Distribution enthält. Das zugehörige Transformationsgesetz lautet
für alle Komponenten . bezeichnet dabei eine irreduzible Darstellung der Gruppe , der universellen, einfach-zusammenhängenden Überlagerungsgruppe von . Die Matrix ist die zu gehörige Lorentz-Transformation (siehe auch Darstellungstheorie der Lorentz-Gruppe).
Das Axiom der Lokalität und die Zyklizität des Vakuums müssen wie folgt abgewandelt werden:
Eine wichtige Folgerung der Wightman-Axiome ist die Tatsache, dass die Erwartungswerte der Theorie gewisse Eigenschaften erfüllen, mit denen sich die Wightman-Axiome vollständig rekonstruieren lassen. Dies soll im folgenden Absatz erläutert werden.
Sei eine hermitesche skalare Wightman-Quantenfeldtheorie. Man bezeichnet eine Funktion mit , welche für durch
definiert ist, als "Wightman-Korrelationsfunktion". Nach einem Satz in der Theorie der Distributionen[6][7], existiert zu eine eindeutig bestimmte temperierte Distribution , sodass
für alle gilt, wobei das Tensorprodukt von Funktionen bezeichnet.
Es lässt sich nun zeigen, dass die folgenden Eigenschaften besitzt:
Wightman's Rekonstruktionssatz:
Es sei eine Menge von Funktionen, die die obigen 6 Eigenschaften besitzen. Dann existiert eine hermitesche skalare Wightman-Quantenfeldtheorie , welche die Wightman-Axiome erfüllt, sodass die Wightman-Korrelationsfunktionen genau den Distributionen entsprechen. In anderen Worten, es gilt, dass
Ein Beweis dieser Aussage lässt sich zum Beispiel in[5] und[8] finden.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.