Loading AI tools
mathematischer Satz Aus Wikipedia, der freien Enzyklopädie
Der weierstraßsche Produktsatz für besagt, dass zu einer vorgegebenen Nullstellenverteilung in eine holomorphe Funktion mit genau diesen Nullstellen existiert. Die Funktion kann als sogenanntes Weierstraß-Produkt explizit konstruiert werden. Der Satz wurde 1876 von Karl Weierstraß gefunden.
Zu endlich vielen Nullstellen kann man sofort ein Polynom hinschreiben, welches das gestellte Problem löst, beispielsweise . Im Falle (abzählbar) unendlich vieler Nullstellen wird das Produkt im Allgemeinen nicht mehr konvergieren. Ausgehend von der Identität führte Weierstraß deshalb "konvergenzerzeugende" Faktoren ein, indem er die Reihenentwicklung abbrach und Faktoren definierte. hat nur eine Nullstelle bei , kann aber im Gegensatz zu auf jeder kompakten Teilmenge des Einheitskreises beliebig nahe an liegen, sofern groß genug gewählt wird. Dadurch kann auch die Konvergenz eines unendlichen Produktes erreicht werden.
Es sei ein positiver Divisor im Bereich und eine so gewählte Folge, dass . Das heißt, die Folge durchläuft mit Ausnahme des Nullpunktes alle Punkte des Trägers von mit der nötigen Multiplizität. Sie heißt die zum Divisor gehörende Folge. Ein Produkt heißt Weierstrass-Produkt zum Divisor , falls gilt:
Zu jedem positiven Divisor in existieren Weierstrass-Produkte der Form . Dabei sei die zum Divisor gehörende Folge.
Es sei ein Bereich und ein positiver Divisor auf mit Träger und es bezeichne die Menge aller Häufungspunkte von in . Dann existieren zum Divisor Weierstraß-Produkte in . Sie konvergieren im Allgemeinen also auf einem größeren Bereich als .
Eine erste Verallgemeinerung des Produktsatzes für andere komplexe Mannigfaltigkeiten gelang 1895 Pierre Cousin, der den Satz für Zylindergebiete im bewies. Aus diesem Grund wird die Frage, ob zu einem vorgegebenen Divisor eine passende meromorphe Funktion konstruiert werden kann, auch als Cousin-Problem bezeichnet.
Jean-Pierre Serre löste 1953 das Cousin-Problem endgültig und zeigte: In einer Steinschen Mannigfaltigkeit ist ein Divisor genau dann der Divisor einer meromorphen Funktion, wenn seine Chernsche Kohomologieklasse in verschwindet. Insbesondere ist in einer Steinschen Mannigfaltigkeit mit jeder Divisor ein Hauptdivisor. Dies ist die unmittelbare Folgerung daraus, dass in Steinschen Mannigfaltigkeiten folgende Sequenz exakt ist, wobei die Garbe der Divisoren bezeichnet:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.