Loading AI tools
Zahlenwerte bei denen die Berechenbarkeit einer Funktion nicht möglich ist Aus Wikipedia, der freien Enzyklopädie
Definitionslücke ist ein Begriff in dem mathematischen Teilgebiet der Analysis. Eine Funktion hat Definitionslücken, wenn einzelne Punkte aus ihrem Definitionsbereich ausgeschlossen sind.
Üblicherweise geht es dabei um reelle, stetige bzw. differenzierbare Funktionen. Die Definitionslücken sind die Stellen, an denen man durch null teilen müsste oder Ähnliches, beispielsweise bei gebrochenrationalen Funktionen. Die Definitionslücken einer Funktion lassen sich klassifizieren und gegebenenfalls „reparieren“, so dass die Funktion dort mit den gewünschten Eigenschaften fortgesetzt werden kann. In diesem Fall ist die Funktion stetig fortsetzbar und hat stetig hebbare Definitionslücken.
Insbesondere wenn eine Definitionslücke nicht stetig hebbar ist, zum Beispiel weil die Funktion dort gegen unendlich strebt oder sehr schnell oszilliert, wird die Lücke auch als Singularität bezeichnet, wobei der Sprachgebrauch in diesen Fällen nicht immer einheitlich ist. Oft werden Definitionslücke und Singularität als Synonyme verwendet.
Bei komplexwertigen Funktionen, die in einer Umgebung einer Definitionslücke holomorph sind, spricht man von isolierten Singularitäten. Dort ist die Klassifikation einfacher und es gelten weitreichende Aussagen, für die es keine Entsprechungen bei reellen Funktionen gibt.
Sei ein Intervall, ein Punkt aus dem Inneren des Intervalls und eine Obermenge von . Eine stetige Funktion , die überall auf der Obermenge außer an der Stelle definiert ist, hat in eine Definitionslücke.[1]
Sei eine Definitionslücke der stetigen Funktion . Existiert eine stetige Funktion mit für alle , dann ist eine stetige Fortsetzung von . Die Definitionslücke wird dann stetig hebbar oder stetig behebbar und die Funktion stetig ergänzbar oder stetig fortsetzbar genannt.
Existiert der Grenzwert
dann ist eine stetig hebbare Definitionslücke von . In diesem Fall wird durch
eine stetige Fortsetzung von ohne Definitionslücke definiert.
Neben den stetig hebbaren Definitionslücken gibt es noch verschiedene Arten von Sprungstellen sowie Polstellen und wesentliche Singularitäten. Funktionen mit solchen Definitionslücken können nicht stetig fortgesetzt werden.
Eine gebrochenrationale Funktion ist der Quotient
aus zwei ganzrationalen Funktionen und .
Eine gebrochenrationale Funktion hat genau dann eine Definitionslücke, wenn die rationale Funktion im Nenner eine Nullstelle hat. Funktionen dieser speziellen Klasse können als Definitionslücken nur Polstellen oder stetig hebbare Definitionslücken aufweisen.
Die Definitionslücke kann nur dann stetig hebbar sein, wenn die ganzrationalen Funktionen im Nenner und Zähler an derselben Stelle eine Nullstelle haben. Für die ganzrationalen Funktionen und ist das Verhalten an den Nullstellen bekannt:
Die Nullstellen der Zähler- und Nennerfunktionen lassen sich ausfaktorisieren. Wenn also und an der Stelle eine Nullstelle haben, so ist immer
und
wobei
Die natürlichen Zahlen und bezeichnet man auch als die Ordnung (oder Vielfachheit) der jeweiligen Nullstelle.
Offensichtlich kann man die gemeinsamen Faktoren der Nullstellen (zumindest für ) kürzen. Das Ergebnis der Kürzung ist der einzige Kandidat für eine stetige Fortsetzung nach .
Die Funktion
hat für eine Lücke, die sich durch Kürzen mit dem Wert beheben lässt, wodurch sich die Funktion
als auch bei stetige Fortsetzung ergibt. Es ist wohlgemerkt ebenso wie für undefiniert, dort liegt eine Polstelle vor.
Ein Beispiel, um die Unterscheidung zwischen einer Polstelle und einer behebbaren Definitionslücke zu veranschaulichen. Die Funktion
hat für eine Definitionslücke, die durch Kürzen mit dem Wert auf die Funktion
Da ebenso wie für undefiniert ist, wurde die Lücke durch das Kürzen nicht behoben. Daher liegt bei eine Polstelle und keine behebbare Definitionslücke vor.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.