Loading AI tools
Metamathematischer Satz aus der Mengenlehre Aus Wikipedia, der freien Enzyklopädie
Das Reflexionsprinzip ist ein mathematischer Satz aus dem Gebiet der Mengenlehre. Die Kernaussage lautet, dass es keinen in der Sprache der Mengenlehre formulierbaren Satz über das Mengenuniversum, das heißt über die Klasse aller Mengen, gibt, der nicht bereits in einer geeigneten Menge „gespiegelt“ (siehe unten) würde, woraus sich der Name Reflexionsprinzip erklärt. Der Satz geht auf Richard Montague (1957) und Azriel Levy (1960) zurück.
Wir betrachten die Stufen der Von-Neumann-Hierarchie. Ist eine Formel der Zermelo-Fraenkel-Mengenlehre, das heißt eine aus Variablen für Mengen und den Symbolen korrekt aufgebaute Aussage, so sagt man spiegele , wenn das durch definierte Prädikat die Aussage spiegelt, diese Begriffe sind im Artikel Relativierung (Mengenlehre) erklärt.
Es gilt nun das sogenannte
In einprägsamer Kurzform lautet das Reflexionsprinzip: Zu jedem Satz gibt es bereits eine Menge, die ihn spiegelt. Diese Menge kann als Stufe der Von-Neumann-Hierarchie gewählt werden. Man kann zeigen, dass man als Limes-Ordinalzahl wählen kann. Es gilt sogar die für den Beweis wesentliche Verschärfung, dass die Klasse aller Ordinalzahlen , so dass von gespiegelt wird, beliebig große club-Mengen enthält.
Das Reflexionsprinzip gilt auch für Verallgemeinerungen der Von-Neumann-Hierarchie. Ist eine beliebige Klasse und eine durch eine Formel definierte Folge von transitiven Mengen mit
so gibt es für jede Formel ein , sodass gilt. Die Verstärkung ist unter anderem auf die konstruierbare Hierarchie anwendbar und kann verwendet werden, um nachzuweisen, dass in das Aussonderungsaxiom gilt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.