Loading AI tools
Schema zur Übertragung von Quanteninformation von einem System zu einem anderen Aus Wikipedia, der freien Enzyklopädie
Die Quantenteleportation ist ein Verfahren, das den quantenmechanischen Zustand eines Quantensystems (Quelle), z. B. eines Photons oder eines Qubits, auf ein anderes Quantensystem (Ziel) überträgt. Der Zustand der Quelle wird durch die Übertragung verändert. Das Verfahren benutzt für die Übertragung zwei Kanäle, einen Quantenkanal und einen klassischen Kanal. Als Quantenkanal dient ein Paar von verschränkten Teilchen.[1] Die Quantenteleportation verwendet die beiden Kanäle und Eigenschaften der Quantenverschränkung, um den Zustand von der Quelle zum Ziel zu übertragen, ohne ihn zu messen.[2]
Die Quantenteleportation ist ein wichtiger Baustein beim Aufbau von Quantennetzwerken.
Die Bezeichnung Quantenteleporation führt immer wieder zu Zeitungsmeldungen, die einen Bezug zu Teleportation der Science Fiction herstellen.[3] Quantenteleportation unterscheidet sich jedoch insofern grundlegend von der Teleportation, als sich am Zielort bereits ein vorbereitetes Quantensystem befindet, auf das der Zustand der Quelle übertragen wird.
Der Quantenkanal der Quantenteleportation besteht aus zwei Teilchen, die in einem Bell-Zustand maximal verschränkt sind. Vor der Übertragung werden die beiden Teilchen getrennt. Das erste Teilchen wird in der Quelle gespeichert und das zweite Teilchen am Ziel. Das Ziel kann theoretisch beliebig weit von der Quelle entfernt sein. Dann führt man an der Quelle eine Bell-Messung an der Kombination aus einem dritten Teilchen , dessen Zustand man übertragen möchte, und dem ersten Teilchen durch. Die Bell-Messung besteht aus Verschränkung und Messung. Die Verschränkung überträgt den Zustand von Teilchen auf das Gesamtsystem . Eine Eigenschaft der Verschränkung ist, dass man dafür keinen Übertragungsweg, keine Übertragungszeit und keine Geschwindigkeit angeben kann. Das anschließende Messen des Teilsystems zerstört die Verschränkung und die Ausgangszustände von und . Das Messergebnis besteht aus zwei Bits. Für die Übertragung der beiden Bits wird ein klassischer Informationskanal, etwa eine Funkverbindung, gebraucht. Die beiden Bits werden am Ziel verarbeitet und auf angewendet. Danach ist der Zustand von identisch mit dem Ausgangszustand von .
Die Prinzipien der Quantenphysik erlauben kein Vervielfältigen von Quantenzuständen (No-Cloning-Theorem). Anders als in der Makrophysik, in der momentane Zustand eines Quellsystems feststellbar ist und somit am Zielsystem reproduziert werden kann, lässt sich der quantenmechanische Zustand eines Quellsystems im Allgemeinen gar nicht ermitteln. Jeder der unendlich vielen Polarisationszustände eines Photons zum Beispiel liefert bei einer Messung nur ein Bit an Information und wird dabei zerstört. Daher ist es schon an sich bemerkenswert, dass sich ein Zustand überhaupt von einem auf ein anderes Objekt übertragen lässt.
Eine wesentliche Eigenschaft des Quantenteleportationsprotokolls ist es, dass es auch dann funktioniert, wenn der zu versendende Zustand dem Sender nicht bekannt oder mit einem weiteren System verschränkt ist. Außerdem wird nur der Zustand eines Quantensystems übertragen, nicht das System selbst transportiert.[4] Daher ist gelegentlich auch vom „körperlosen“ (engl.: disembodied) Transport die Rede.[5]
Die Idee der Quantenteleportation wurde von Asher Peres, William Wootters, Gilles Brassard, Charles H. Bennett, Richard Jozsa und Claude Crépeau 1993 in den Physical Review Letters veröffentlicht.[6] Die sechs Physiker schlugen in ihrem Artikel vor, dass ein Paar verschränkter Teilchen als Quantenkanal dient.[7] Quantenteleportation wurde erstmals 1997 von Anton Zeilinger[8], fast gleichzeitig mit Sandu Popescu, Francesco De Martini und anderen[9] durch quantenoptische Experimente mit Photonen demonstriert. Mittlerweile ist auch die Teleportation der Zustände einzelner Atome möglich.[10][11]
Alice und Bob besitzen zwei Teilchen und , die in einem Bell-Zustand, zum Beispiel , maximal miteinander verschränkt sind. Chris hat ein Teilchen im Zustand . Diesen Zustand soll Alice auf Bobs Teilchen teleportieren. Alice führt eine Bell-Messung auf und aus. Dabei werden zunächst alle drei Teilchen miteinander verschränkt. Durch die anschließenden Messungen wird die Verschränkung zerstört. Unabhängig vom Zustand sind die vier möglichen Resultate der Bell-Messung gleich wahrscheinlich. Im Teilsystem wird die Information über durch die Messungen zerstört. Erfährt Bob nun auf einem klassischen Übertragungskanal das Ergebnis der Bell-Messung, so kann er den ursprünglichen Zustand von auf rekonstruieren. Danach ist der Zustand von identisch mit vor der Bell-Messung.
Der klassische Anteil wird über klassische Kommunikation übertragen; dessen Geschwindigkeit die Quantenteleportation in Übereinstimmung mit der Relativitätstheorie begrenzt. Die nichtklassische Information wird durch nichtlokale Korrelationen übermittelt: Alice und Bob erhalten jeweils ein Photon eines aus zwei Photonen bestehenden EPR-Paares. Alice führt eine Messung durch, die den Zustand mit ihrem EPR-Photon verschränkt.
Solch eine Messung kann darin bestehen, beide Photonen in einem Faserkoppler miteinander zu verschränken und danach die Art der Verschränkung mit zwei Strahlteilern zu messen.[12] Bei diesem Prozess verändert sich unmittelbar auch der Quantenzustand von Bobs EPR-Photon. Alice teilt Bob auf klassischem Weg das Ergebnis ihrer Messung mit. Daraufhin kann Bob durch eine Polarisationsmanipulation an seinem EPR-Photon den ursprünglichen Zustand reproduzieren. Der ursprüngliche Quantenzustand wird bei der Quantenteleportation verändert, und zwar durch die Verschränkungs-Messung des Senders.[13]
Man kann eine Quantenteleportation auch mit Hilfe von Quantengattern auf einem Quantencomputer durchführen. Die nebenstehende Quantenschaltung zeigt die Schritte des Teleportationsprotokolls:
Die Quantenteleportation benötigt zwischen Sender A (Alice) und Empfänger B (Bob) zweierlei Verbindungen:
Indizes bezeichnen das Qubit, für das mit etc. der Zustand angegeben wird. Das Zeichen (Tensorprodukt) kann gesetzt oder weggelassen werden.
Bereitschaft zur Teleportation ist gegeben, wenn sich das System , wie angenommen, in dem verschränkten Zustand befindet.
Wird Chris’ Qubit in die Betrachtung einbezogen, so haben wir im Hilbertraum des Systems zu rechnen. Der Zustand von sei . Da in keiner Wechselwirkung mit oder steht, hat das Gesamtsystem den Produktzustand
Im Hinblick auf die Bell-Messung an den Qubits und beim Sender soll in an Stelle der Standardbasis das Orthonormalsystem der vier Bell-Zustände, :
verwendet werden.
Dabei sind einzusetzen:
Nach dem Ordnen der Terme hat man
Bezeichnet die Spiegelung in der Polarisationsebene an der -Achse und die Drehung um im Uhrzeigersinn, so sind also und wir erhalten die Gleichung, auf der die Teleportation beruht:
Die linke Seite beschreibt den Aufbau von : Sender A und Empfänger B besitzen Qubits und im Verschränkungszustand , und sind damit für eine Übertragung bereit. Qubit , Träger des zu versendenden Zustands, steht quasi unbeteiligt dabei. Denselben Zustand stellt die rechte Seite als Überlagerung von vier Zuständen dar, die die möglichen Reaktionen des Systems auf die geplanten Messungen ausdrücken. Die Produkte sind paarweise orthogonal zueinander und treten jeweils mit Amplitude 1/2 auf. Der Zufall bestimmt daher mit der gleichen Wahrscheinlichkeit 1/4, in welchem der vier Zustände sich das System bei den geplanten Messungen zeigen wird: Eine Entscheidung für beide Messungen, für die an und die an . Das führt zu einer strengen Korrelation: Ergibt A's Messung , so fällt ein Test an auf mit Sicherheit positiv aus. Dabei ist die raum/zeit-liche Distanz der Messereignisse belanglos, im Prinzip also auch ihre zeitliche Reihenfolge. Es ist nur das Protokoll der Teleportation, das vorschreibt, dass erst A misst, um nach dem Ergebnis ihrer Messung B Anweisung geben zu können, wie er manipulieren, transformieren kann, um nicht sondern zu messen. Dass er nicht kennt, spielt keine Rolle. Er muss nur wissen, welche Transformation er auszuführen hat. Das Protokoll endet mit der Feststellung, das Empfänger-Qubit sei nun im Zustand . Eine Messung an kann später zu einem unbestimmten Zeitpunkt erfolgen.
2003 demonstrierte Nicolas Gisin mit seinem Team an der Universität Genf Quantenteleportation mit Photonen über große Distanzen (2 km Glasfaser bei 55 m Abstand)[16], 2007 auch in kommerziellen Glasfaserkommunikationsnetzwerken (Swisscom).
Im Jahr 2004 gelang den Arbeitsgruppen an der Universität Innsbruck um Rainer Blatt und am NIST um David Wineland in Boulder Colorado erstmals eine Quantenteleportation mit Atomen bzw. Ionen.[17] und die Wiener Forscher um Rupert Ursin und Anton Zeilinger konnten erstmals einen Quantenzustand eines Photons auch außerhalb eines Labors teleportieren. Sie überbrückten eine Strecke von 600 m unter der Donau. Dafür wurde ein Lichtwellenleiter in einen Abwasserkanal unter der Donau verlegt, um den Quantenzustand (die Polarisation) des zu teleportierenden Photons von der Donauinsel (Alice) auf die südliche Donauseite (Bob) auf ein anderes Photon zu übertragen.[18] Bei Alice wurde die Quelle der verschränkten Photonen aufgebaut und eines der verschränkten Photonen des Paares über ein Glasfaserkabel zu Bob übertragen. Das andere Photon des Paares überlagerte Alice mit dem zu teleportierenden Photon und nahm eine Bellzustandsmessung vor – dabei wurde der ursprüngliche zu übertragende Polarisationszustand von Alices Photon zerstört. Die Ergebnisse von Alices Bellzustandsmessung, die zwei der möglichen vier Bellzustände voneinander unterscheiden kann, wurden über einen klassischen Informationskanal zu Bob übertragen, der dann – falls erforderlich – eine entsprechende unitäre Transformation (eine Drehung der Polarisationsrichtung) auf sein verschränktes Photon anwandte, um die Übertragung des Quantenzustandes (also die ursprüngliche Polarisationsrichtung von Alices Photon) auf dieses abzuschließen.[19]
Im Juli 2009 haben Forscher der Universitäten in Auckland (Neuseeland), Griffith Universität in Queensland (Australien) und Doha (Katar) eine Methode vorgeschlagen, wie man einen Lichtstrahl oder ein komplettes Quantenfeld, inklusive der Fluktuationen über die Zeit hinweg, teleportieren kann. Diese „starke“ Teleportation (inklusive der Fluktuationen) wird als eine Voraussetzung für einige Quanteninformationsanwendungen angesehen und könnte zur Teleportation von Quantenbildern führen.[20]
Im Mai 2010 berichtete das Wissenschaftsmagazin Nature über die erfolgreiche Quantenteleportation über eine Entfernung von 16 Kilometer, im Freiland durchgeführt von einem chinesischen Team unter der Leitung von Xian-Min Jin. Erreicht wurde eine mittlere Genauigkeit von 89 Prozent, was deutlich über der klassisch zu erwartenden Grenze von 2/3 liegt.[21]
Im Mai 2012 haben Forscher der Chinesischen Universität für Wissenschaft und Technik nach eigenen Angaben mit Hilfe eines Lasers eine Entfernung von 97 Kilometer überwunden und damit einen neuen Rekord aufgestellt.[22][23][24]
Im September 2012 veröffentlichte das Wissenschaftsmagazin Nature einen Bericht über eine Quantenteleportation über eine Entfernung von 143 km von La Palma nach Teneriffa.[25]
Im August 2014 berichtete Nature über eine Versuchsanordnung zur Quantenteleportation mit Photonen unterschiedlicher Energie. Sie ermöglicht es, ein Objekt mit niederfrequentem Infrarotlicht zu durchleuchten, dessen Wechselwirkung mit dem untersuchten Objekt sich auf die verschränkten Photonen im sichtbaren Licht auswirkt, welche mit einfachen Digitalkameras zu erfassen sind.[26][27]
Eine äquivalente Beschreibung von Quantenteleportation im Rahmen der Quantengravitation fanden 2016 Ping Gao, Daniel Louis Jafferis und Aron C. Wall, als sie eine neue Art von Wurmlöchern einführten.[28][29]
Die Quantenteleportation kann praktisch angewendet werden, um Information zwischen zwei Quantencomputern oder innerhalb eines Quantecomputers zu übertragen. Sie ist ein wichtiger Baustein beim Aufbau von Quantennetzwerken und findet Anwendung in der Quantenkryptographie. Die Quantenteleportation erlaubt es, Quantenzustände zu übertragen, ohne sie dabei durch einen Messvorgang gleichzeitig zu verändern (vergleiche dazu: Quantenmechanische Messung).
Zur Vorbereitung muss wie oben beschrieben vor der Quantenteleportation ein verschränktes Quantensystem auf Quelle und Ziel verteilt und dort gespeichert werden. Man kann z. B. Qubits durch Photonen realisieren, die über eine Glasfaserleitung verteilt werden. In der Praxis treten beim Transport und beim Speichern von Photonen technische Schwierigkeiten auf. Maßnahmen für ihre Behebung wurden bereits theoretisch analysiert und zum Teil in Prototypen umgesetzt.[30] Siehe auch Quantenrepeater und Quantenfehlerkorrektur.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.