Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Die Proteinqualitätskontrolle (engl. protein quality control) ist in eukaryotischen Zellen ein zellulärer Schutzmechanismus, der für die Aufrechterhaltung eines funktionierenden Proteoms und zum Überleben der Zelle von grundlegender Wichtigkeit ist. Alle in einer Zelle synthetisierten sekretorischen Proteine werden in das Endoplasmatische Retikulum (ER) transportiert und dort einer Qualitätskontrolle unterzogen. Falsch gefaltete Proteine werden über das zytosolische Ubiquitin-Proteasom-System abgebaut. Die korrekt gefalteten Proteine werden zu ihren Bestimmungsorten, beispielsweise dem Lysosom, dem Golgi-Apparat, der Zellmembran oder dem Extrazellularraum, transportiert.[1]
Übergeordnet |
---|
ER-Proteinabbau Antwort auf Proteinfehlfaltung Abbau fehlgefalteter oder unvollständiger Proteine |
Gene Ontology |
QuickGO |
Für die Funktion eines Proteins ist dessen korrekte Primär- und Tertiärstruktur von entscheidender Wichtigkeit. Nur richtig gefaltete Proteine können fehlerfrei funktionieren und Fehler in der Proteinfaltung führen zu alternativen Strukturen die biologisch nicht aktiv sind. Die Ursachen für eine falsche Proteinfaltung können unterschiedlicher Natur sein. Genmutationen in Exons, die zu Veränderungen in der Aminosäuresequenz, also der Primärstruktur des Genproduktes führen, haben unmittelbare Einflüsse auf die Sekundär- und Tertiärstruktur, beziehungsweise auf die Proteinfaltungskinetik. Auch Fehler bei der Transkription oder der Translation können zu Fehlfaltungen der Proteine führen. Man nennt diese fehlerhaften Proteine ‚defekte ribosomale Produkte‘ (engl. defective ribosomal products, DRiPs).[2] Etwa 30 % aller Polypeptide und Proteine, die eine Säugetierzelle produziert, werden mit einer Halbwertszeit von weniger als zehn Minuten durch Proteasomen abgebaut, weil sie nicht korrekt gefaltet sind.[3][4] Der Anteil an Fehlfaltungen ist von Protein zu Protein recht unterschiedlich. Bei empfindlichen und komplex aufgebauten Proteinen, wie beispielsweise Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), kann der Anteil an Fehlfaltungen 60 bis 80 % betragen.[5] Zu den durch Produktionsfehler entstandenen DRiPs kommen noch Proteine hinzu, die durch toxische Einflüsse, wie beispielsweise ionisierende Strahlung, die eine Proteinoxidation bewirken kann, geschädigt wurden und deshalb ihre Funktion in der Zelle nicht mehr erfüllen können. Für eine Zelle ist das Erkennen und der Abbau fehlgefalteter und defekter Proteine überlebenswichtig, da sie sonst die Zelle nachhaltig schädigen würden.
Zur Sicherung der Qualität der Proteine entwickelte sich im Laufe der Evolution ein mehrstufiges System, das in drei Phasen abläuft. In der ersten Phase, dem sogenannten Proofreading (dt. ‚Korrekturlesen‘) wird das Protein überprüft. In der zweiten Phase wird versucht das Protein mit aktiver Unterstützung zu falten. Misslingt dieser Versuch, so wird das Protein abgebaut. Gelingt er, erfolgt der Proteintransport zu seinem Bestimmungsort. Diese beiden Möglichkeiten sind die dritte Phase. In allen drei Phasen spielen Chaperone (dt. ‚Anstandsdamen‘) eine zentrale Rolle. Diese Proteine helfen bei der Erkennung von fehlerhaften Proteinen. Sie dienen als Plattform für die Protein-Kompartimentierung (der Proteinzuordnung in bestimmte Zellkompartimente) und -Assemblierung (der Zusammenlagerung einzelner Proteinkomponenten zu Strukturen höherer Ordnung).[6]
Von den fehlgefalteten Proteinen wird etwa Dreiviertel über das Standard-26S-Proteasom abgebaut, wobei der Abbau über die Aktivität des Hitzeschockproteins Hsc70 reguliert wird. Co-Chaperone unterstützen Hsc70 beim Transport der DRiPs zum Proteasom. Ubiquitin wird als molekulares Signal über das Co-Chaperon CHIP kovalent über den C-Terminus an die DRiPS gebunden. Das Signal ist im Proteasom wichtig zur Erkennung, dass dieses Protein abgebaut werden soll.[7] Die Aktivität von Hsc70 wird über das Protein HSJ1 (auch als DNAJB2 – ein Homolog von HSP40 – bezeichnet) geregelt. HSJ1 stimuliert die Hydrolyse von ATP am Hsc70, damit dieses stabil an die Polypeptidkette binden kann. Das ubiquitinierte Polypeptid wird zudem von HSJ1 abgeschirmt, damit das Ubiquitin nicht vor dem Eintreffen im Proteasom abgespalten wird.[8]
Das restliche Viertel an falsch gefalteten Proteinen wird ohne Ubiquitinierung durch das 20S-Proteasom, unabhängig von den 19S-Regulatoren und weitgehend ohne Einfluss der Aktivität von Hsp70, zerlegt.[9] Falsch gefaltete Proteine stellen den größten Anteil der durch das Proteasom abgebauten Proteine und sind die wichtigste Quelle für Selbstantigene des Haupthistokompatibilitätskomplexes I (MHC I).[9] Eine Ansammlung fehlgefalteter Proteine im endoplasmatischen Retikulum führt zur Unfolded Protein Response.
Die Proteinqualitätskontrolle findet in der Zelle an drei bisher bekannten Orten statt.
Für jede Zelle, und letztlich für den gesamten Organismus, ist der Abbau fehlerhafter Proteine und die Aufrechterhaltung eines funktionierenden Proteoms von essentieller Wichtigkeit. Dies zu gewährleisten ist die Aufgabe der Proteinqualitätskontrolle. Störungen des Gleichgewichts der Proteinqualitätskontrolle zwischen Proteinfaltung und Degradation führen zu schwerwiegenden Erkrankungen, die in drei Gruppen unterteilt werden können.[12]
Es gibt auch Erkrankungen, bei denen sowohl der Funktionsverlust, als auch die toxische Proteinablagerung pathologisch werden. Ein Beispiel hierfür ist der Alpha-1-Antitrypsin-Mangel. Eine Mutation im SERPINA1-Gen, das für das Akute-Phase-Protein α-1-Antitrypsin – ein Proteaseinhibitor – kodiert, bewirkt eine Fehlfaltung von α-1-Antitrypsin. α-1-Antitrypsin wird im Wesentlichen von Hepatozyten in der Leber exprimiert. Wegen der Fehlfaltung kann es nicht von den Hepatozyten sezerniert werden und es bildet intrazelluläre Ablagerungen. Der Funktionsverlust führt bei den betroffenen Patienten zu einem progredienten Lungenemphysem, da durch den Mangel an α-1-Antitrypsin das Enzym Leukozytenelastase (engl. human leukocyte elastase, HLE) ungebremst das Lungengerüst zerstören kann. Die Ablagerungen von α-1-Antitrypsin in den Hepatozyten führen parallel zum Lungenemphysem zu einer Leberzirrhose.[12]
Eine Vielzahl von genetischen Erkrankungen, die auf einer Loss-of-function-Mutation beruhen, werden nicht durch eine verminderte Funktion des Proteins, sondern durch eine signifikant reduzierte Faltungskinetik verursacht. Diese Proteine sind also prinzipiell voll funktionsfähig, werden aber durch die Proteinqualitätskontrolle wegen ihrer Falschfaltung ausgesondert und abgebaut.[12] Dies ist beispielsweise bei vielen lysosomalen Speicherkrankheiten der Fall. Ein therapeutischer Ansatz ist die Chaperon-Therapie. Dabei soll die Verabreichung von pharmakologischen Chaperonen die Proteinfaltungskinetik der lysosomalen Enzyme positiv beeinflussen. Die pharmakologischen Chaperone sind reversible Inhibitoren, die dem Enzym als Templat dienen.[13][14]
Der Arzneistoff Bortezomib greift als Proteasominhibitor unmittelbar in die Proteinqualitätskontrolle ein. Durch die Blockade des Proteasoms werden lebensnotwendige Proteolyse-Prozesse in den Zellen unterdrückt.[15] Davon sind sowohl gesunde als auch maligne Zellen (Krebszellen) betroffen. Im Gegensatz zu den Krebszellen können sich die normalen Zellen wieder regenerieren, wenn die Behandlung zu bestimmten Zeitpunkten unterbrochen wird. Bortezomib ist in Europa zur Behandlung des multiplen Myeloms zugelassen.[16]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.