Loading AI tools
aus zusammenhängenden Würfeln bestehender Körper Aus Wikipedia, der freien Enzyklopädie
Ein Polywürfel (oder Polykubus) ist ein Körper, der aus zusammenhängenden Würfeln besteht. Für kleine sind die Bezeichnungen Monowürfel (), Biwürfel (), Triwürfel (), Tetrawürfel (), Pentawürfel (), Hexawürfel (), Heptawürfel (), Oktawürfel () üblich.
Die Anzahl verschiedener Polywürfel wächst mit zunehmender Würfelanzahl sehr schnell: 1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, … (OEIS, A000162[1]). Sie unterteilen sich in die Folge
Die Polywürfel finden zum einen im Mathematikunterricht der Primar- und Sekundarstufe Verwendung, wo sie hauptsächlich der Schulung des räumlichen Vorstellungsvermögens und zur Untersuchung einfacher Eigenschaften dienen, zum anderen bei geometrischen Spielen wie dem Herzberger Quader, wo der freien und kreativen Gestaltung beim Entwickeln und Erfinden von Formen und Strukturen praktisch keine Grenzen gesetzt sind.
Es gibt zwei verschiedene Triwürfel, nämlich die den Triominos entsprechende I- und L-Form.
Aus neun L-förmigen Triwürfeln lässt sich ein (3 × 3 × 3)-Würfel zusammenfügen.[2]
Es gibt acht verschiedene Tetrawürfel, nämlich 5 ebene (Tetrominos) und 3 räumliche.
Tetrawürfel | Volumen | Oberfläche | Kantensumme | # Ecken | # Flächen | # Kanten |
---|---|---|---|---|---|---|
I | 4 | 18 | 24 | 8 | 6 | 12 |
L | 4 | 18 | 26 | 12 | 8 | 18 |
L1 | 4 | 18 | 28 | 15 | 9 | 21 |
L2 | 4 | 18 | 30 | 17 | 12 | 24 |
L3 | 4 | 18 | 28 | 15 | 9 | 21 |
N | 4 | 18 | 28 | 16 | 10 | 24 |
O | 4 | 16 | 20 | 8 | 6 | 12 |
T | 4 | 18 | 28 | 16 | 10 | 24 |
Für die ebenen Tetrawürfel gilt der Eulersche Polyedersatz: # Ecken + # Flächen = # Kanten + 2.
Der Somawürfel – ein (3 × 3 × 3)-Würfel – ist aus den sieben irregulären Tri- und Tetrawürfeln, d. h. denjenigen mit einspringender Kante, zusammengesetzt.
Aus fünf Einheitswürfeln lassen sich insgesamt 29 verschiedene Pentawürfel bilden, nämlich die 12 ebenen (planaren) Pentawürfel, die das räumliche Pendant zu den 12 Pentominos darstellen, sowie die 17 räumlichen (stereometrischen) Pentawürfel, von denen 5 symmetrisch sind und 6 mit je einem entsprechenden Spiegelbild.
Der Mathematiker David A. Klarner fand heraus, dass sich 25 Y-Pentawürfel zu einem (5 × 5 × 5)-Würfel zusammenfügen lassen. Es gibt 1264 verschiedene Lösungen.[3][4]
Wenn man von den 29 Pentawürfeln die vier weglässt, die in einer Richtung 4 oder 5 Einheitswürfel haben (Pentominoform I, L, N und Y), kann man mit den restlichen 25 Teilen den sogenannten Dorian-Würfel – ein nach dessen Erfinder Joseph Dorrie benannter (5 × 5 × 5)-Würfel – zusammenfügen.
Aus 12 Pentawürfeln und 1 Tetrawürfel kann man den von dem britischen Puzzleerfinder Bruce Bedlam erfundenen Bedlam-Würfel – ein (4 × 4 × 4)-Würfel – bauen. Es gibt 19.186 verschiedene Lösungen.[5]
Ein weiterer (4 × 4 × 4)-Würfel lässt sich aus zehn spiegelbildlich unterschiedlichen (L2, L4, S1, S2, V1) und zwei (L3, T1) Pentawürfeln sowie dem L-Tetrawürfel zusammensetzen.
Das Computerspiel BlockOut basiert auf Polywürfeln vom Monowürfel bis zu Pentawürfeln.
Aus je einem Di-, Tri, Tetra-, Penta-, Hexa- und Heptawürfel lässt sich ein (3 × 3 × 3)-Würfel zusammensetzen, der als „Diabolischer Würfel“ bekannt ist. Es ist eines der ältesten Würfelzerlegungspuzzles und wurde erstmals 1893 von dem Rechtsanwalt Angelo John Lewis (1839–1919) – unter dem Pseudonym Professor Louis Hoffmann – in Puzzles Old and New erwähnt.[6] Es gibt 13 verschiedene Lösungen.
Eine Untergruppe von 261 der 6553 räumlichen Oktawürfel stellen geometrisch gesehen das dreidimensionale Netz eines Tesserakts, also eines vierdimensionalen Hyperwürfels dar, da er durch 8 würfelförmige Zellen begrenzt wird.[7] Künstlerisch ist eine dieser Möglichkeiten durch den spanischen Maler Salvador Dalí in seinem 1954 entstandenen Gemälde Crucifixion (Corpus Hypercubus) verwendet worden.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.